Key Assumptions of the Transcension Hypothesis: Do Advanced Civilizations Leave Our Universe?

Low-mass X-ray binary (LMXRB) star system. Strange as it seems, Earth’s future may look something like this, with us inside a black hole-like environment of our creation, on a highly accelerated path to merging with other universal civilizations doing the same. If true, our destiny is density, and dematerialization.

This post is a followup to a popular paper of mine on three big topics: the Fermi paradox, accelerating change, and astrosociology (the nature and goals of advanced civilizations). The paper is called The transcension hypothesis: sufficiently advanced civilizations may invariably leave our universe, and implications for METI and SETI. It was published in Acta Astronautica in 2012.

Speculation on the Fermi paradox has grown considerably in the last two decades, as it has become increasingly obvious that we live in a universe that is very likely to be teeming with Earth-like planets, and also with intelligent, curious, and technologically accelerating forms of life. When we extrapolate our own accelerating progress in science, IT, and nantechnologies, we can imagine that any one of these civilizations could easily send out self-replicating nanotech that would spread across our Milky Way galaxy and beam the information that it finds out to the rest of the universe (or alternatively, just back to the originating civilization), creating a Galactic Internet, and making our universe as information-transparent as our planet is becoming today. Our galaxy has a radius of 100,000 light years. Replicating nanotech, traveling at just 5% of light speed, which we can imagine building even today, could reach all corners of our galaxy in 2 million years. So if other Earth-like planets and their intelligent life likely emerged, closer to the center of our galaxy, at least one billion years before ours did, as several astrobiologists have estimated, and any one of them could have easily expanded, why don’t we see any signs of this Galactic Internet today? Or signs of past alien visitation, probes, and megastructure beacons near Earth? Or signs of intelligent structures or civilizations anywhere in the night sky? In other words, Where is Everybody? That’s the Fermi paradox.

In a nutshell, the transcension hypothesis predicts constrained transcension of intelligence from the universe, rather than expansion (colonization) within the universe by intelligence, wherever it arises. If the hypothesis is correct, the reason we don’t see and haven’t heard from advanced civilizations anywhere is that the vast majority leave the visible universe as they develop, and the few that do not are very unlikely to be visible to us, with our presently weak SETI abilities. That’s a very strong claim. Could it be right?

My paper makes a series of assumptions about the nature and future of intelligent life in our universe. Most of these key assumptions may need to to be correct, in some fashion, for the hypothesis itself to be correct. A few colleagues have asked me to summarize these assumptions in one place, so here they are. This list is a good way to get a quick summary of the hypothesis as well.

Here are the key assumptions of the transcension hypothesis, as I presently see them:

  1. Intelligent life, on Earth and elsewhere in our universe, is not only evolving (diversifying, experimenting), but also developing (converging toward a particular set of future destinations, in form and function), in a manner in some ways similar to biological development. In other words, all civilizations in our universe are “evo-devo” both evolutionary and developmental. The phenomenon of convergent evolution tells us a lot about the way development may work on planetary scales. A kind of cosmic convergent evolution (universal development) must also exist at universal scales.
  2. The leading edge of intelligence always migrates its brains and bodies into increasingly dense, productive, miniaturized, accelerated, and efficient scales of Space, Time, Energy, and Matter (what I call STEM compression), because this is the best strategy to become the niche-dominant local intelligence (and for modern humans, Earth’s biosphere is one precious and indivisible niche), and because the special physics of our universe allows this continual migration into “nanospace“. Human brains with their thoughts, emotions, morality, and self- and social-consciousness, are the most STEM-compressed higher computational systems on Earth at present. But our biological brains are just now starting to get beat at the production of intelligence by deep learning computers, which are even more profoundly STEM-compressed in certain kinds of computation than neurons (for example, electrical interneuron communication in an artificial neural network is seven million times faster than chemical action potentials between biological neurons). Once today’s weakly bio-inspired machine intelligence becomes fully self-improving, it seem likely to continue growing and improving at rates that make biological intelligence appear rooted in spacetime by comparison, in the same way that Earth’s plant life appears rooted in spacetime by comparison to self-aware animal life. Fortunately, accelerating STEM-compression of both human civilization and of our leading computational technologies is stepwise measurable and testable, as argued in my paper. Our academics need better funding and training to do so, however. Measuring the STEM-efficiency growth of new computational platforms, like quantum computing, is today far more art than science.
  3. The acceleration of STEM compression must eventually stop, at structures analogous to black holes, which in current theories appear to be the most computationally accelerated and computationally efficient entities in the known  universe, an insight Seth Lloyd made in 2000 which remains widely underappreciated by most information, computation, and complexity theorists today. Fortunately, this idea of a developmental “black hole destiny” for civilization seems quite testable observationally via search for extraterrestrial intelligence (SETI), as argued in my paper.
  4. A civilization whose intelligence structures are compressed to scales far below the nanoscale may well be capable of creating or entering black-hole-like environments without their informational nature being destroyed. There are 25 orders of magnitude in size between atoms and the Planck scale. This is almost as large a size range as the 30 orders of magnitude presently inhabited by life on Earth. We simply don’t know yet whether intelligence can exist at those small scales. My bet is that it can, and that STEM compression drives leading universal intelligence there, as the fastest way to generate further intelligence, with the least need for local resources.
  5. Due to general relativity, extreme gravitational time dilation occurs very near the surface (event horizon) of black holes. Thus black holes, wherever they exist, can act as forward time travel devices, for any highly STEM compressed civilization that can arbitrarily closely approach their surface without destroying itself. Black-hole-like conditions are thus gateways to instantaneous meeting and merger with other unique civilizations in our universe within any gravity well. Our gravity well includes the Milky Way and Andromeda galaxies, each of which is destined to merge all its black holes, and each of which may contain millions of intelligent civilizations. The rest of our universe is accelerating away from us, due to dark energy. Perhaps the vast majority of black holes in these galaxies (billions?) are unintelligent collapsed stars. But if the transcension hypothesis holds, some smaller number (millions?) may also be a product of intelligent civilizations.
  6. As local acceleration of STEM compression stops, the more black-hole-like we become, local learning will saturate. Local intelligence will be running as fast as it can in this universe, yet it will be both resource and speed constrained. It’s local conditions, in other words, will be increasingly boring and predictable. It will be, from its own reference frame, at “The End of Science”, the end of what it can easily learn and know, to use the title of the elegant and profound book The End of Science (1996/2015) by science writer John Horgan. In those interesting conditions, it may irresistable to slow down local time via black hole entry, and thus simultaneously accelerate nonlocal time, making meeting and merger with other civilizations near-instantaneous. In “normal” universal time, galactic black holes are predicted to merge some tens to hundreds of billions of years from now, as our universe dies. But from each black hole’s reference frame,  this merger is near-instantaneous We can think of black holes as shortcuts through spacetime, just like quantum computers are shortcuts through spacetime. Indeed, quantum physics and black holes (relativity) must eventually be both evo (chaotically) and devo (causally) connected, both physically and informationally, in any future theory of quantum gravity. If some type of hyperspace, extradimensionality, or wormhole-like physics is possible, there might also be ways of future humanity instantaneously meeting civilizations beyond our two local galaxies. But such exotic physics is not necessary for our local gravity well, and for all other civilizations in their own galactic gravity wells. Standard relativity predicts that if we can survive in black-hole-like densities, and if our galaxies are life and intelligence-fecund, we will meet and merge with potentially millions of civilizations as soon as we approach the surface of any black hole, from our reference frame. In other words, our universe appears to have both “transcension physics” and massive parallelism of intelligence experiments built into its relativistic topology and large scale structure.
  7. If we live in not only a developmental universe, but an evolutionary one, each local universal civilization can never be God-like, but must instead be computationally incomplete, an evolutionary “experiment” with its own own unique discoveries and views on the meaning and purpose of life. Thus each civilization, no matter how advanced, would be expected to have useful computational differences, and be able to learn useful things, from every other civilization. In such a universe, we would greatly value communication, assuming that we could trust the other advanced civilizations that we might communicate with. Computational incompleteness would also make us increasing value simulation over physical experimentation, the more complex intelligence becomes. The better faster, better, and more resource (STEM) efficient models of our physical world get, the more we choose virtual rather than physical experiments to address perennial incompleteness in our intelligence.
  8. If not only intelligence, but also immunity (stability, antifragility) and morality grow in leading intelligences in our universe, in rough proportion to their complexity, in other words, if these three life-critical systems are each not only evolutionary, but also developmental, and thus their emergent form and function is at least partly encoded in the “genes” (initial conditions, laws, and environmental constraints) of the system itself, then we can predict that more advanced intelligences, including our coming deep learning computers, will be not only more intelligent, but also more immune and moral than we are today. This idea is called developmental immunity and developmental morality, and I explore it in my paper, Evo-Devo Universe? (2008). If these developmental processes exist, they tell us something about the nature of postbiological life. Such life is going to be a whole lot more collaboration-oriented, intelligence-oriented, immune, and moral than we are today. Social morality, for its part, pushes complex intelligences toward a more ethical impact on the world and each of its sentiences. Decreasing violence has been a mild trend in human societies in recent centuries, as documented in Pinker’s The Better Angels of Our Nature, 2011. But I expect it to be a much stronger trend in postbiological intelligences. Physicists Stephen Dick and Seth Shostak have stressed the importance of thinking hard about the norms and morality of postbiological culture. It’s a big assumption that surviving human and machine collectives must on average become increasingly intelligent, immune, and moral in proportion to their cognitive complexity, under natural processes of evolutionary selection and development, but this is where all the evidence seems to be leading, in my view.
  9. In a universe with developmental immunity and morality, a moral prime directive must emerge, a directive to keep each local civilization evolving in a way that maximizes its intelligence, uniqueness and adaptiveness prior to transcension. That means one-way messaging (powerful METI beacons), self-replicating probes able to interact with less advanced civilizations, and any other kind of galactic colonization would both be ethically prohibited by postbiological life, due to the great reduction in evolutionary diversity that would occur. Wherever it happened, we would meet informational clones of ourselves after transcension, a most undesirable outcome. In biology, evolution keeps clonality a very rare outcome, due to the diversity and adaptiveness cost that it levies on the progeny. In such an environment, any future biological humans that wanted to continue to colonize the stars would be prevented from doing so, by much more ethical and universe-oriented postbiological intelligences. That is assuming biological organisms even continue to be around after postbiological life emerges. Due to STEM compression, their status as biologicals would likely be vanishing short, once they invent technology capable of colonization. It seems much more likely that biology develops into postbiology, relatively soon (just a few centuries perhaps) after digital computers emerge, everywhere in the universe. This outcome also seems likely to be testable via future information theory and SETI, as I argue in my paper.
  10. Some physicists, most notably Lee Smolin in his hypothesis of cosmological natural selection, propose that black holes may be “seeds” or “replicators” for new universes. That gives us a clue to what we might do after we meet up with other cosmic intelligences. We would likely compare and contrast what we’ve learned, and then seek to make a better and more adaptive universe (or universes) in the next replication. Current physics and computation theory suggest that our universe, though vast, is both finite and computationally incomplete. It may have gained its current amazing levels of internal complexity in the same way life on Earth got its amazing living complexity, via evolutionary and developmental (“evo-devo“) self-organization, through many past replications, in some kind of selection environment, a “multiverse” or “hyperverse.”
  11. If all of this is roughly correct, our future isn’t outer space, it’s “inner space.” Both the inner space of black-hole like domains, and the inner space of increasingly virtual and computational domains. The lure of our continually improving inner space is why 21st century folks spend so much time (too much time!) interacting with our still-dumb mobile devices today. It is why the growth of virtual and augmented reality heralds far more than just better entertainment experiences. Combined with the growth of machine learning, virtual/augmented reality will increasingly become the thinking, imagination, and simulation space for eventual postbiological life. Virtual space is where intelligent machines will figure out what they want to do in physical space, just as our own simulating brains are biology’s virtual reality. And just like humans have have done as our civilization has developed, future machines will do more and more internalization, or thinking in virtual space, and less and less external acting, in physical space, the more intelligent they get. This internalization process has a name. It’s called dematerialization (both economic dematerialization and product and process dematerialization), the substitution of information and computation for physical products, processes, and behaviors. The futurist Buckminster Fuller called this process ephemeralization. But ephemeralization of intelligence is only half the story. It describes dematerialization, not densification. If the transcension hypothesis is true, the developmental destiny of all complex life is both accelerating “densification” (eventually to a black hole-like state) and “dematerialization” (becoming increasingly informational and virtual, over time). See my online book, The Foresight Guide, for more on these planetary megatrends, densification and dematerialization (“D&D”) and how they appear to drive universal accelerating change. 

As Fermi paradox scholar Stephen Webb says at his blog, this is quite a lot of “ifs!” Disproving any of these assumptions would be a good way to start knocking aspects of the transcension hypothesis out of contention. We would learn a lot about ourselves and the universe in the process, so I really hope that each of these gets challenged in coming years, as the hypothesis gets further exposure and critique.

Webb is the author of Where is Everybody?2015, a book that offers seventy-five possible solutions to the Fermi Paradox. Webb did a great job condensing the transcension hypothesis into just three pages in his book. His 2002 edition didn’t include it, as I published my first paper on the hypothesis in mid-2002. At Webb’s blog, he charitably says the transcension hypothesis is “one of the most intriguing” possible solutions that he has seen. He also observes that “Unlike so many “solutions” to the Fermi paradox, this one offers avenues for further research.” It certainly does, which is why I hope it continues to gain scrutiny and critique.

A few scholars are now citing the transcension hypothesis in their academic papers on the Fermi paradox and accelerating change, including Sandberg 2010, Flores Martinez 2014, and Conway Morris 2016. I am hoping that trend continues. The more attention it gets, the more critique it will get.

Perhaps the strangest and hardest-to-believe part of the transcension hypothesis, for many, is the idea of universal development. It is particularly relevant to the first, seventh, eighth, and ninth assumptions above. The most amazing and odds-defying thing I’ve come across in my own study of the natural world so far is the process of biological development. Most people don’t think about both how wonderful and how improbable, on its face, is the process of organismic development.

Think about it. Development is guided by a small handful of genes in our genome. It’s incredible that it works, yet it does, and it made you! Development is a good candidate for the most incredible process in the known universe. In many ways, development is even more surprising than evolution, which I define as the set of biological genes and mechanisms that create unpredictable experiment and variety, as opposed to that small subset of chaos-reducing biological genes and mechanisms that statistically guarantee a hierarchical set of future-specific forms and functions. Standard evolutionary theory requires development as an organismic process, yet it also treats development as subservient to the variety-generating processes in natural selection. That second assumption is incorrect, in my view, and it has led us down the wrong path in long-range thinking on the future of complex adaptive systems. We view our complex future as far less developmentally constrained than it actually is.

Fortunately, a growing contingent of evo-devo biologists argue that development’s long-range role in constraining the possibilities of evolutionary change may be equally important to evolution’s long-range impact on development. Both processes seem fundamental to mature theory of adaptation. Ecologists have published good work on the way ecosystem development limits the future of evolutionary processes. For example, think of ecological succession, in which increasing senescence of the ecosystem limits short-term evolutionary variety, while also making the oldest parts of the system increasingly vulnerable to death (and renewal). Think also of niche construction, which tells us how growing intelligence, which we use to fashion comfortable niches, limits the future selection placed upon us by our environment. Scholars of convergent evolution also describe apparently universal processes of morphological and functional development that will constrain evolutionary possibilities on all Earth-like planets. Cosmologists who take fine-tuned universe arguments seriously also talk about both local variety and processes of universal development, though they don’t often use that clarifying phrase, when they describe physical and chemical constraints on the possibilities of evolutionary change. All these are important clues toward a meta-Darwinian, evo-devo universe paradigm of universal change.

In short, if our universe actually replicates, as seems plausible in several cosmology theories, and if it exists in some kind of larger selection environment, as also seems plausible, then not only evolution, but development (“convergent evolution”) must also occur not just in species forms and ecosystems, but for our increasingly intelligent planet, as a developing life-human-machine “Global Superorganism”, and for our entire universe itself, as a replicator in the multiverse. Certain aspects of the future of complex systems must be statistically highly biased to converge on particular destinations, and today’s evolution-centric science still has a lot of growing up still to do in order to see these destinations. It needs to become “evo-devo”, seeing the contributions of both evolution and development to the future of universal complexity.

The paper’s second key assumption, STEM compression is more palatable to most people, in my experience, and may turn out to be the most enduring contribution of the paper, even if the rest of the hypothesis is eventually invalidated. If you’ve heard of nanotechnology, you know that life’s leading edge today, humanity, is doing everything it can to move our complexity and computation down the smallest scales we can. We have been very successful at this shrinking over the last several hundred years, and our ability to miniaturize and control processes at both atomic and subatomic scales is growing exponentially. In fact, human brains themselves are already vastly denser, more efficient, and more miniaturized computational devices than any living thing that has gone before them. But they are positively gargantuan compared to the intelligent computing devices that are coming next.

Fortunately I think each of the key assumptions outlined above are testable, though some are obviously more testable than others in today’s early stages of astrophysical theory, SETI ability, information, complexity, and evo-devo theory, and simulation capacity. If anyone is doing work that might shed light on any of these assumptions, I would love to hear of it.

You can find my paper here: The Transcension Hypothesis, 2012. See also this fun 2 minute YouTube video of the hypothesis, by the inspiring futurist Jason Silva and Kathleen Lakey, which has raised its visibility in recent years.

You can find an overview of the evo-devo (evolutionary and developmental) universe hypothesis in my chapter-length article, Evo-Devo Universe? A Framework for Speculations on Cosmic Culture, 2008.

Comments? Critiques? Feedback is always appreciated, thanks.

Humanity Rising: Why Evolutionary Developmentalism Will Inherit the Future

Evo Devo Universe - An Interdisciplinary Research Community

Evo-Devo Universe – Exploring Models of Universal Evolution and Development

An expanded version of this post was published as:
Smart, John M., Humanity Rising: Why Evolutionary Developmentalism Will Inherit the Future, World Future Review, November 2015: 116-130. doi:10.1177/1946756715601647 (SAGE: abstract). Oct 2016:
Full PDF (21 pages) is now available here.

For more on Evo-Devo, see Chapter 11 (Evo-Devo Foresight) of my online book, The Foresight Guide (2018).

What is evolutionary development (“evo-devo”)? It is a minority view of change in science, business, policy, foresight and philosophy today, a simultaneous application of both evolutionary and developmental thinking to the universe and its replicating subsystems. It is derived from evo-devo biology, a view of biological change that is redefining our thinking about evolution and development. As a big picture perspective on complex systems, I think evo-devo models will be critical to understanding our past, present, and future. The sixty-some scholars at Evo-Devo Universe, an interdisciplinary community I co-founded with philosopher Clement Vidal in 2008, are interested in arguing, critiquing and testing evolutionary and developmental models of the universe and its subsystems, and exploring their variations and implications.

Whatever else our universe is, and allowing that there are physical mysteries, like dark matter, dark energy, the substructure of quarks, and the nature of black holes still to be uncovered, reasonable analysis suggests that it is both evolutionary and developmental, or “evo-devo”. Like a living organism, it undergoes both experimental, stochastic, divergent, and unpredictable change, a process we can call evolution , and at the same time, programmed, convergent, conservative, and predictable change, a process we can call development. Evo-devo thinking is practiced by any who realize that parts of our future are unpredictable and creative, while other parts are predictable and conservative, and that in the universe, as in life, both processes are always operating at the same time.

Does our Universe have a developmental life cycle? Evolutionary developmentalists think it may.

Like living organisms, our universe may have a developmental life cycle.

Our universe builds intelligence in a developmental hierarchy as it unfolds, from physics, to chemistry, to biology, to biominds, to postbiological intelligence. As physicists like Lee Smolin (The Life of the Cosmos, 1999) have argued, our universe may also be chained to a developmental life cycle, like a living organism. Since almost every interesting complex system we know of within the universe, from solar systems to cells, undergoes some form of replication, inheritance, variation, and selection to build its complexity, it is parsimonious (conceptually the simplest model) to suspect this is how the universe built its complexity as well, within a still poorly understood environment that physicists call the multiverse.

An evo-devo universe proposes that any physical system that has both evolutionary  (divergence, variation) and developmental (convergence, replication, inheritance) features, and operates in a selective environment, will self-organize its own adaptive complexity as replication proceeds. Consider how replicating stars have advanced from the primitive Population III stars to the far more complex Population I solar systems, like our Sun and its complex planets, over galactic time. Replicating evo-devo chemicals built up from nucleic acids to cells, over billions of years. Replicating evo-devo cells created multicellular life with nervous systems,  again over billions of years.  Replicating evo-devo nervous systems forged hominids, over roughly 500 million years. Replicating languages, ideas, and behaviors in hominid brains birthed nonbiological computing systems, over something like 5 million years. Now computing and robotics systems, whose replication is presently aided by human culture, are soon (within the next few decades, it seems) going to be able to replicate, evolve, and develop autonomously.

The evo-devo model provides an intuitive, life-analogous, and conceptually parsimonious explanation for several nagging and otherwise improbable phenomena, including the fine-tuned Universe problem, the presumed great fecundity of terrestrial planets and life, when an evolution-only framework would lead us to predict a Rare Earth universe, the Gaia hypothesis, the surprisingly life-protective and geohomeostatic nature of Earth’s environment, the unreasonably smooth, redundant and resilient nature of accelerating change and leading-edge complexification on Earth, and other curiosities. If true, it should be able to increasingly demonstrate how and why such phenomena might self-organize as strategies to ensure a more adaptive and intelligence-permitting universe, in an ultimately simulation testable model. It also provides a rejoinder to theologian William Paley’s famous watchmaker argument, that only a God could have designed our planet’s breathtaking complexity, with the curious example of replicative self-organization of complexity, a phenomenon seen in a great variety of dissipative systems on multiple scales in our universe, and one we will increasingly understand, model, and test in coming years.

As much as some might find comfort in believing in a God who designed our universe, it is perhaps even more comforting to believe, tentatively and conditionally, in a Universe with such incredible self-organizing and self-protecting features, and in the amazing history and abilities of evolutionary and developmental processes in living systems themselves. Evo-devo processes have apparently created both matter and mind, and have been astonishingly resilient to generating complexity and intelligence at ever-accelerating rates. Found throughout our universe, such information-protective processes may even transcend our universe, and may have determined the first replicator, if such a thing exists. Then again, perhaps our physics and information theory will never reach back that far, and such knowledge may forever remain metaphysics. In the meantime we can say that Big History, the science story of the universe so far, is sufficiently awe inspiring, humbling, useful, and hopeful to give us guidance, once we place it in an evo-devo frame. As we’ll suggest, we now know enough about evolution and development at the universal scale to begin relating these processes to our own lives, and most interestingly, to ask how we can make our values and goals more consistent with universal processes.

As our universe grows islands of accelerating local order and intelligence in a sea of ever-increasing entropy, physics tells us this process cannot continue forever. The universe’s “body” is aging, and will end in either heat death, or a big rip, or both. If our universe is indeed a replicating complex adaptive system that engages in both evolution and development, as it grows older it must package its intelligence into some kind of reproductive system, so it’s complexity can survive its death and begin again. Developmental models thus argue that intelligent civilizations throughout the universe are part of that reproductive system – protecting our complexity and ultimately reproducing the universe and further improving the intelligence it contains. In other words, growing, protecting, and reproducing personal, family, social, and universal intelligence may be the evolutionary developmental purpose of all intelligent beings, to the greatest extent that they are able.

Charles Darwin - Father of Evolutionary Theory

Charles Darwin, On the Origin of Species, 1859

Beginning in 1859, Charles Darwin helped us to clearly see evolutionism in living systems, for the first time. Discovering that humanity was an incremental, experimental product of the natural world was a revolutionary advance over our intellectually passive, antirational and humanocentric religious beliefs. But until we also understand and accept developmentalism, recognizing that the universe not only evolves but develops, the purpose and values of the universe, and our place in it will remain high mysteries about which science has little of interest to say. Our science will remain infantile, descriptive without also being prescriptive, and unable to deeply inform our morality and politics. That must and will change in coming decades.

Discovery_Channel_Curiosity

Curiosity – A Discover Channel TV Series

As an example of where we are today, I just watched a Discovery Channel program on evolution, Mankind Rising, available for $1.99 at YouTube It is Season 2, Episode 8 of Curiosity a new educational television series launched by Discovery founder and chairman John HendricksCuriosity is a five-year, multi-million dollar initiative to tackle fundamental questions and mysteries of science, technology, and society, in sixty episodes. There is also a commendable Curiosity initiative in American K-12 schools, to use the show to increase our children’s engagement in STEM education.

mankindrisingcuriositydiscovery2012

Mankind Rising – Season 2, Episode 8 of Curiosity

Mankind Rising considers the question “How did we get here?” It tells the journey of humanity from the cooling of life’s nursery, Earth, 4 billion years ago, and the emergence of the first cell 3.8 billion years ago, to Homo erectus, anatomically modern humans, 1.8 million years ago. It does this in one 43 minute time-lapsed computer animation, the first time our biological history has received such a treatment, as far as I know. The animation is primitive, but it holds your interest enough to follow the story. And what an amazing story it is.  We see a lovely visualization of the Phylogenetic hypothesis, which proposes that human hiccups are a holdover from our amphibian ancestry, when we gulped air at the surface across our gills, which are now vestigial (think of pharyngeal pouches in human embryos), before we grew lungs. Human babies do a lot of gulping-hiccuping both in utero and when born prematurely, and both amphibian gill-gulping and human hiccups are stopped by elevated carbon dioxide, hence the folk remedy to breathe into a bag to stop them.

We also get to see the rise of the first tool users, Homo habilis, 4 million years ago, in a dramatic sequence where an early human strikes one rock against another and is fascinated to discover a sharp rock in his hands. H. habilis’ ability to hold sharp rocks and clubs in their hands, and use them imitatively in groups to defend against other animals was perhaps the original human event. The best definition of humanity, in my opinion, is any species that gains the ability to use technology creatively and socially to continually turn themselves into something more than their biological selves. We inevitably become a species with both greater mind (rationality, intellect) and greater heart (emotion, empathy, love), two core kinds of intelligence. I would predict the first collaborative rock-users on any Earth-like planet must soon thereafter become its dominant species, as there are so many paths to further adaptiveness from the powerful developmental duo of creative tool use and socially imitative behavior.

persistencehuntingmankindrising2012

Homo habilis, perhaps the first persistence hunters.

One clever thing that the first socially-adept rock- and club-holding animals on any Earth-like planet gain access to is pack hunting (and if good at sweating, a form of pack hunting called  persistence hunting). Learning both how to pack hunt and how to tame fire, as described in Richard Wrangham’s Catching Fire: How Cooking Made Us Human, 2010, may have doubled our brain size by giving us our first reliable access to meat, a very high-energy fuel source. We may have begun with pack hunting by ambush, which chimpanzees do today, and then graduated to persistence hunting, or running down our prey, sometimes in combination with setting fires to flush out our prey. We primates sweat across our entire bodies, not just through our mouths like other mammals. Humans have developed our sweating and cooling ability the best of all primates by far. As a result, two or three of us working together can actually run to heat exhaustion any animals that can’t sweat, if we hunt them in the mid-day sun.  Some peoples persistence hunt even today, as seen in this amazing seven minute Life on Earth clip of San Bushmen running down a Kudu antelope (!!) in the Kalahari desert. Mankind Rising ends with Homo erectus (“human upright”), possibly the first language-using humans, 1.8 million years ago. We don’t yet have fossil evidence their larynx was anatomically modern, but there are indirect arguments.  Language, both a form of socially imitative behavior and a fundamental tool for information encoding and processing, was very likely the final technology needed to push our species from the animal to the human level.

In Evolutionism, the Universe is a massive set of Random Events, Randomly Interacting.

In Evolutionism, the Universe is a Massive Set of Random Events, Randomly Interacting.

Unfortunately, there are serious shortcomings to Mankind Rising as an educational device. The show’s narrative, and the theory it represents, are the standard one-sided, dogmatically-presented story of life’s evolution, with no hint of life’s development. As a result, it treats humanity’s history as one big series of unpredictable accidents. This is the perspective of universal evolutionism, also called “Universal Darwinism” ”, which considers random selection to be the only process in universal change, ignoring the possibility of universal development. In evolutionism, all the great emergence events are told as happening randomly and contingently. The show even makes the extreme claim that life itself emerged “against the laws of probability.” The emergence of humanlike animals is also presented as a stroke of blind luck, because the K-T meteorite wiped out our predators, the dinosaurs. All of this is true in part, only from one set of perspectives, that of the individual, organism, or individual event. In other words this story, and evolutionism in general, is a dangerously incomplete half-truth.

When we look at the same events from the perspective of the universal system, the environment, or distributions of events over time, we can easily argue that many particular forms and functions appear physically predetermined to emerge. Consider two genetically identical biological twins, or two snowflakes. Most of what happens to them up close, at the molecular scale, is randomly, contingently, unpredictably different. The microstructure of all the twin’s organs, including their brain, fingerprints, and many other molecular features are as different as the designs on two snowflakes. But look at them from across the room, taking a system or environmental perspective, and you see that they achieve many of the same developmental endpoints over time. The twins have the same body and facial structure and many of the same personality traits, constrained by the organism’s developmental genes and the shared environment. The snowflake’s hexagonal structure is developmentally predetermined, constrained by the way water forms hydrogen bonds as it freezes.

Just like biological development, universal development happens because of the special initial conditions (physical laws, or “genes”) of our universe, the time constancy and environmental sameness (isotropy) of some physical law throughout the universe/system/environment, and the apparent commonness (ubiquity) of Earth-like planets in our universe, a suspicion that will hopefully be proven by astrobiologists in coming years. Examples of developmental processes and structures are easy to propose. We can see developmental physics in the motions of the planets, which are highly future-predictable, as Isaac Newton discovered. Other physical processes, such as the production of black holes in general relativity, the acceleration of entropy production, and of complexification in special locations, also appear highly predictable and universal. Other physics by contrast, such as quantum physics, looks highly evolutionary and unpredictable. As we move up the complexity hierarchy from physics to chemistry to biology, to society, our list of potential evolutionary and developmental forms and processes rapidly grows.

In Developmentalism, Certain Systemic Forms and Functions are Statistically Fated to Emerge in the Universe, as in Biological Development

In Developmentalism, Certain Universal Forms and Functions are Statistically Fated to Emerge, as in Biological Development

Convergent form and function in placental and marsupial mammals - a famous example of convergent evolution, or better, convergent evolutionary development.

Convergent form and function in placental and marsupial mammals – a famous example of convergent evolution, or better, convergent evolutionary development.

Other examples of inevitable, ubiquitous developments in our universe may include organic chemistry as the only easy path to complex replicating autocatalytic molecular species. Earth-like planets with water, carbon and nitrogen cycles (plate tectonics), nucleic acids, lipid membranes, amino acids, and proteins as the only easy path to cells (testable by simulation). Oxidative phosphorylation redox chemistry as the only easy path to high-energy chemical life. Multicellular organisms, bilateral symmetry, eyes, skeletons, jointed limbs, land colonization, opposable thumbs, social brains, gestural and vocal language, and imitative behavior as the only easy path to runaway technology (tool use). And similar unique developmental advantages to written language, math, science, and various technology archetypes, from sharp rocks and clubs to levers, wheels, electricity, and computers. These potentially universal forms and functions may be destined to emerge, because of the particular initial conditions and laws of the universe in which evolution is occurring, and each are destined to become optimal or dominant, for their time, in environments in which accelerating complexification and intelligence growth are occurring.

On Earth, we have seen a number of these forms, such as eyes, emerge and persist independently in various separate evolutionary lineages and environments. Independent emergence, convergence, and optimization or dominance of developmental forms and processes is one good way to separate them from the much larger set of ongoing evolutionary experiments. Developmental forms and functions are those that will be more adaptive at each particular stage of environmental complexity, in more contexts and species. Think of two eyes for a predator, over three or one eye. Or four wheels for a car, over three or more than four wheels. Or all the body form and function types that converged in placental and marsupial mammals. Australia separated early from the other continents, yet produced many similar mammal types via marsupials, plus a few new ones, like the kangaroo. This is a classic example of convergent evolution, or more accurately, convergent evolutionary development, when we examine biological change from the planet and universe’s perspective.

Evolution is destined to randomly, contingently, and creatively but inevitably discover these optimal developmental forms and functions, in most environments. For more on evolutionary developmentalism, feel free to read my 50-page precis, Evo Devo Universe?, 2008, and let me know your thoughts.

Would Raptors Have Led Inevitably to Dinosaur Humanoids, if the K-T Meteorite Hadn't Hit 65 Mya? - The Dinosauroid Hypothesis, one of several Developmentalist proposals, yet to be tested.

Would Raptors Have Led Inevitably to Dinosaur Humanoids (Dinosauroids), if the K-T Meteorite Hadn’t Hit 65 Mya? That is the Dinosauroid Hypothesis, a Developmentalist Proposal.

As another example ignored by the show, several evolutionary developmentalists have independently proposed that our very-easy-to-create-yet-general-purpose  “humanoid form”, a bilaterally symmetric bipedal tetrapod with two eyes and two opposable thumbs, is a very likely outcome for all biological intelligences that first achieve our level of sophistication on all Earth-like planets. If we saw such “early” alien intelligences from across a dimly lit room, they would they look roughly like us, as the astrophysicist Frank Drake, author of the Drake equation, has argued. But while we can use science and simulation to argue their existence, in my view we have virtually no chance to meet other biological organisms in the flesh. Why? Because the universe does a very good job of separating all the evolutionary experiments by vast distances, uncrossable by biological beings. Our universe may have self organized to have its current structure in order to maximize the diversity of intelligences created within it, as I argue in my 2008 paper. No intelligence is ever Godlike, so diversity is our best strategy for improving our lot. Another reason we’ll likely never meet biological beings from other Earthlike planets is because the leading edge of life on Earth is now rapidly on the way to becoming postbiological, and postbiologicals are likely to have very different interests than traveling long distances through slow and boring outer space, when there are much better options apparently available in “inner space,” as I argue in my 2012 paper.

In other words, our own particular mammalian pathway to higher intelligence has likely given us a unique evolutionary pathway to our developmental humanity, one with great universal value. Our civilization has likely discovered and created some things you won’t find anywhere else in the universe. But at the same time, if the K-T meteorite hadn’t struck us 65 mya, it is easy for an evolutionary developmentalist to argue that dinosaurs like Troodon would have inevitably discovered the humanoid form, rocks, language, and tools, and we might have looked today like that green-skinned humanoid in the picture above. Why?

If you have seen the movie Jurassic Park, or have read up on raptors like Troodon, you know that they had semi-opposable digits and hunted in packs, in both the day and the night. It is easy to bet that the first raptor descendants that also learned how to hold sharp rocks and clubs in their hands in close-quarters combat would have forever after owned the role of top biological species. It would be game over, and competitive exclusion, for all other species that wanted that niche. Once you are manipulating tools in your hands, and speaking with your larynx, it’s easy to imagine that your body is forced upright, and your tail is no longer useful. You are engaged in runaway complexification of your social and technical intelligence – you’ve become human, and the leading edge of local planetary intelligence has jumped to a higher substrate. Dale Russell, author of the Dinosauroid hypothesis in 1982, was scoffed at by conventional evolutionists back then, and the model is still largely ignored today, see for example Wikipedia’s short and evolutionist-biased paragraph on it. This response from the scientific community is predictable, given the hornet’s nest of implications that evolutionary developmentalism introduces, including all the deficiencies in current cosmology of our understanding of the roles of information, computation, life and mind.

The hand of Stenonychosaurus inequalis, with a partly opposable digit.

The hand of Troodon inequalis, with a partly opposable digit.

Note the closeup of the hand of Stenonychosaurus (now called Troodon) inequalis, from Russell’s paper,“Reconstructions of the small cretaceous theropod Stenonychosauris inequalis and a hypothetical dinosauroid,” Dale A. Russell and Ron Séguin, Syllogeus, 37, 1982. The authors state the structure of the carpal block on Troodon’s hands argues that one of the three fingers partially opposed the other two as shown. The shape of the ulna also suggests its forearms rotated. It probably used its hands to snatch small prey, and to grab hold of larger dinosaurs while ripping into them with the raptorial claw on the inside of each of its feet. Troodon was a member of a very successful and diverse clade of small bipedal, binocular vision dinosaurs with one free claw on their feet, the Deinonychosaurs (“fearsome claw lizards”). These animals lived over the last 100 million years of the 165 million years of dinosaur existence, and were among the smartest and most agile dinosaurs known, with the highest brain-to-body ratios of any animals in the Mesozoic era. Most Deinonychosaurs had arms that were a useful combination of small wings and crude hands consisting of three long claws. Troodon was in a special subfamily that had lost the wings but retained the three long digits on each hand. According to Russell, Troodon’s brain-to-body ratio was the highest known for dinosaurs at the time. Because of their special abilities, I would argue that Deinonychosaurs  were not only members of an evolutionarily successful niche, they also occupied an inevitably successful developmental niche as well.

The assumption here, made by a handful of anthropologists and evolutionary scholars over the years, is that trees are a key niche, the “developmental bottleneck,” through which the first rock-throwing and club-wielding imitative hominids will very likely pass, on a typical Earth-like planet. Swinging from limb to limb requires very dextrous hands, and just as importantly, a cerebellum and forebrain that can predict where the body will go in space. With their manipulative hands, with or without wings, their big, strong legs and multipurpose feet, yet their small size, Deinonychosaurs would have been impressive tree climbers, able to get rapidly up and down from considerable heights. If they were the largest and strongest animals physically capable of doing so, which seems likely, this argues that they would have permanently occupied the special niche that primates would later inhabit. Imagine primates trying to get into the all-important tree niche with Deinonychosaurs running about. Good luck! Deinonychosaurs would have achieved “competitive exclusion”, the ability to permanently deny other species access to the critical transitional niche that was the gateway to significantly more intelligent and adaptive life. Much later, Homo sapiens achieved competitive exclusion by being the first to achieve runaway language and tool use, using these to deny all other primates access to more intelligent and adaptive social structures, including our closest competitors, Homo neanderthalensis and others.

So if  tree climbing and swinging is the fastest and best way to build grasping hands and predictive brains good at simulating complex trajectories (a claim testable by future simulation) and eventually, modeling and imitating the mental states of others in their pack so they could do imitative tool use (the next critical developmental bottleneck leading to planetary dominance for the first species to do so, also testable by future simulation), then if Deinonychosaurs dominated that niche, it is reasonable to expect a Deinonychosaur to be the first to make the jump to tool use. Troodon couldn’t swing in the trees, but he would have been very agile among them, able to use them for escape and evasion. He had two manipulative hands that would have been very useful both in killing and in avoiding being killed. This looks to me like a potential case for competitive exclusion. The hypothesis to test is that tree environments are the dominant developmental place on land to breed smart, socially-imitative and tool-using species, just as land appears to be the dominant developmental place for the emergence of species that use built structures, on any Earth-like planet.

One might ask, couldn’t tool use under water grow to reach competitive exclusion first? Apparently not. Unlike air, water is a very dense and forceful fluid relative to the muscles of species that operate within it, gravity doesn’t hold down aqueous structures or animals very well, and language may not allow for the same degree of phonetic articulation underwater as well as it does in air. But underwater tool using collectives do exist. Dolphins use sponges in collectives, and the master observer Jacques Cousteau discovered in the 1980s that octopi used rocks as tools, in large socially imitative groups. Like their eyes and brains, two of their eight appendages are prehensile with bilateral symmetry, meaning they are specially neurologically wired to oppose each other in grasping and wielding objects, just like human arms and hands (developmental convergence). Octopi even occasionally built large groups of small huts for themselves out of rocks, but their collective rock use could not make them the dominant species under water, due to its harsher physics compared to air. Thus it seems very likely that runaway tool use must happen with very high probability on land first, on all Earth-like planets. Again, this developmental hypothesis will eventually be testable by simulation.

The universe, from this perspective, seems developmentally fated for the fastest-improving language-capable tool-using species to emerge on land, in a breathable atmosphere, not under water. This new selection environment of cultural evo-devo, selecting for more complex language and more useful social collectives, is sometimes called memetic evolutionary development, using Richard Dawkin’s concept of the meme as any elemental mentally replicating behavior or idea.

We must recognize that memetic change is always accompanied by another selection environment, technological evo-devo, which starts out very weak at first but becomes increasingly dominant, because our social ideas always lead to ways to use technologies (things outside our bodies) to achieve our goals, and those technologies inevitably become smarter, more powerful and more efficient than biological processes, which are very limited by the fragile materials (peptide bonds) from which they are made.

Susan Blackmore’s calls any elemental socially replicating technological form or algorithm a teme. So we must realize that both memetic and temetic evo-devo always go together in leading animals, on any Earthlike planet. Once these new replicators (social ideas/behaviors and technologies/algorithms) emerge, biological evo-devo (genetic and even epigenetic change) soon becomes so slow and modest by comparison that its further changes become increasingly future irrelevant, relative to memes and temes. As much as we love our ecosystem and should strive to protect it, it is where ideas and technologies are taking us today, not biology, that drives the future of our civilization.

Simon Conway Morris - A Leading Evolutionary Developmentalist (though he might not use that term :)

Simon Conway Morris – A Leading Evolutionary Developmentalist (but he might not use that term) 🙂

In the years since Russell’s indecent proposal, hundreds of other scientists, including the paleontologist Simon Conway Morris (Life’s Solution, 2001 and The Deep Structure of Biology, 2008) have proposed that humanity’s most advanced features, including our morality, emotions, and tool use, have all been independently discovered, to varying degrees, in other vertebrate and invertebrate species on Earth. Let us at this point acknowledge but also ignore Conway Morris’s Christianity, as his particular religious beliefs are his own business, and are not relevant to his scientific arguments, as his secular critics should honestly acknowledge. According to Conway-Morris, if something catastrophic happened to Homo sapiens on Earth, it seems highly probable that another species would very quickly emerge to become the dominant “human” tool-users in our place. In other words, local runaway complexification seems well protected by the universe.

In evo-devo language, we can say there appears to be a developmental immune system operating, to ensure that human emergence, and re-emergence if catastrophes like the K-T meteorite occur, will be both a very highly probable and an accelerating universal event, on any Earth-like planet. Only the quality of our present transition to postbiological status seems evolutionary, based on the morality and wisdom of our actions. Our pathway to and our subtype of humanity may thus be special and unique, but our humanity itself, in many of its key features, seems to be a product of the universe, far more than a product of our own free choice. Learning to see, accept, and better manage all this hidden universal development, and in the process bringing our personal ego, fears, and illusions of control back down to fit historical reality, are among the greatest challenges humans face in understanding the true nature of the universe and our place in it.

Fortunately, these and other developmentalist hypotheses can increasingly be tested by computer simulation, as our computing technology, historical data, and scientific theory get progressively better. Run the universe simulation multiple times, and anything that appears environmentally dominant time and again, and any immunity that we see (statistical protection of accelerating complexity), is developmental. The rest, of course, is creative and evolutionary. To recap our earlier example, hexagonal snowflake structure will be developmental on all Earth-like planets with snow. But the pattern on each snowflake  will be evolutionary, and unpredictably unique, both on Earth and everywhere else. Nature uses both types of processes to build intelligence.

An Evo Devo Universe isn't a Ladder of Life (above), or a Blind Watchmaker, but some combination of the two.

In Evolutionary Development, the Universe is not just a Ladder of Nature (above), or a Random Experiment (standard Evolutionary theory), but some useful combination of the two simpler models.

Let me stress here that evolutionary development is no return to the Aristotelian scala naturae (Ladder of Nature, Great Chain of Being), where all important matter and process are predestined into some strict hierarchy of emergence. Only the developmental framework of universal complexification is statistically predetermined to emerge in evo-devo models, not the evolutionary painting itself, which is the bulk of the work of art. Remember the all-important differences in tissue microarchitecture and mental processes between two genetically (developmentally) identical twins. Nor is an evo-devo universe a Newtonian or Laplacian “clockwork universe” model, which proposes total physical predetermination, though it is a model with some statistically clockwork-like features, including the reliable timing of various hierarchical emergences throughout the universe’s lifespan and death, just as we see in biological development).

Consider that both the Aristotelian and Lapacian models of the universe are not real models of development (statistically predetermined emergence and lifecycle) but rather a caricature of development, one-sided views that allow no room or role for evolution. They are as incomplete in describing the whole of an evo-devo universe as neo-Darwinian theory is today.

Nor is an evo-devo universe the random, deaf-and-dumb Blind Tinkerer that universal evolutionists like Richard Dawkins (The Blind Watchmaker, 1996) or the writers of Mankind Rising portray. It appears that our universe is significantly more complex, intelligent, resilient, and interesting than all of these models suppose – it is predictable in certain critical parts that are necessary for its function and replication, and it is intrinsically unpredictable and creative in all the rest of its parts. Furthermore, unpredictable evolution and predictable development may be constrained to work together in ways that maximize intelligence and adaptation, both for leading-edge systems, and for the universe as a system.

evo-devo

A Good Overview of Evo-Devo Biology

 Evo-devo biology is an academic community of several thousand theoretical and applied evolutionary and developmental biologists who seek to improve standard evolutionary theory by more rigorously modeling the way evolutionary and developmental processes interact in living systems to produce biological modules, morphologies, species, and ecosystems.  Books like From Embryology to Evo-Devo, 2009, and Convergent Evolution: Limited Forms Most Beautiful, 2011, are great intros to this emerging field. I expect most evolutionary developmental biologists would agree with the statement that evolution and development are in many ways opposite and equally fundamental processes in complex living systems, and that neither can be properly understood without reference to its interaction with the other.

If you doubt the idea of universal development, read this 2011 book!

If you doubt the idea of universal development, read this great 2011 book!

The best of this work realizes there are two key forms of selection and fitness landscapes operating in natural selection – evolutionary selection, which is divergent and treelike, with chaotic attractors, and developmental selection, which is convergent and funnel-like, with standard attractors. Thus evolutionary developmentalism is an attempt to generalize the evo-devo biological perspective to nonliving replicating complex adaptive systems as well, including solar systems, prebiological chemistry, ideas, technology, and in particular, to the universe as a system.

Let’s close this overview with one revealing example of the interaction of evolution and development. In biological systems, the vast majority of our genes, roughly 95% of them, are evolutionary, meaning they change randomly and unpredictably over macroscopic time, continually recombining and varying as species reproduce. Only about 3-5% of our genes control our developmental processes, and those highly conserved genes, our “developmental genetic toolkit“, direct predictable changes in the organism as it traces a life cycle in its environment. As I’ve argued before, as a 95%/5% Evo/Devo Rule, roughly 95% of the processes or events in a wide variety of complex adaptive systems, including organizations, societies, species, and the universe may turn out be creative bottom-up and evolutionary, and only 5% may be predictable top-down, and developmental, though this evo-devo ratio must surely vary by system to some degree. The generic value of a 95/5 Rule in building and maintaining intelligent systems, if one exists, would explain why the vast majority of universal change appears to be bottom-up driven, evolutionary and unpredictable in complex systems, what systems theorist Kevin Kelly called Out of Control in his prescient 1994 book. Yet a critical subset of events and processes in these systems also appears to be top-down/systemically directed, developmental, and intrinsically predictable, if you have the right theory, computational resources, and data. Discovering that developmental subset, and differentiating it from the much larger evolutionary subset, will make our world vastly more understandable, and show how it is constrained to certain future destinies, even as creativity and experimentation keep growing within all the evolutionary domains.

So what do we gain from conditionally holding and exploring the hypothesis of universal evolutionary development? Quite a lot, I think:

First, we regain an open mind. Rather than telling humanity’s history from a dogmatic and one-sided perspective, and assuming that our past existence in the universe is predominantly a “random accident,” we remember that there are many highly predictable things about our universe, such as classical mechanics, the laws of thermodynamics, and accelerating change. This allows us to present life’s story as a mystery: What parts of its emergence are very highly probable, or statistically predetermined? What parts are improbable accidents? We lose our blind faith that neo-Darwinism explains all of life or the universe, and we realize that there appears to be a balance between evolutionary experiment and developmental predetermination in all things in the universe, as in life.

Second, we regain our humility. We no longer see ourselves as either miraculous creations or extremely improbable accidents. We recognize that there are likely vast numbers of human communities in the universe, which has self organized to produce complex systems like us, and our postbiological descendants. It is commonly suggested that we are incredibly unique in the universe, and that we emerged “against astronomical odds.” On the contrary, developmentalists suspect that many or all of the things we hold most dear about humanity, including our brains, language, emotions, love, morality, consciousness, tools, technology, and scientific curiosity, are all highly likely or even inevitable developments on Earth-like planets all across the universe. This kind of thinking, looking for our universals as well as our uniquenesses, moves us from a Western exceptionalism frame of mind to one that also includes an Eastern or Buddhist perspective. We may not only be unique and individual experiments, but we may also be members of a type that is as common as sand grains on a beach, instruments of a larger cycle of universal development and replication.

Third, we lose our unjustified fearfulness of and pessimism toward the future, and replace it with courage and practical optimism. The evolutionary accident story of humanity teaches us to be ever vigilant for things that could end our species at any moment. Vigilance is adaptive, but fear is usually not. We are constantly reminded by evolutionists that 99% of all species that ever lived are extinct (yes, but they were all necessary experiments, and their useful information lives on), and we live in a random, hostile and purposeless universe (no). Evolutionists conveniently forget that the patterns of intelligence in those species that died are almost all highly redundantly backed up in the other surviving organisms on the planet. Life is very, very good at preserving relevant pattern, information, and complexity, and now with science and technology, it is getting far better still at complexity protection and resiliency. When we study how complexity has emerged in life’s history, we gain a new appreciation for the smoothness of the rise of complexity and intelligence on Earth. Every catastrophe we can point to appears to have primarily catalyzed further immediate jumps in life’s accelerating intelligence and adaptiveness at the leading edge. Life needs regular catastrophe to make it stronger, and it is resilient beyond all expectation. What causes this resilience? Apparently a combination of evolutionary diversity and developmental immune systems, and we still undervalue the former, and are mostly ignorant of the latter. If the universe is developmental, we can expect it has some kind of immune systems protecting its development, just as living systems do. The more we are willing to consider the idea that the universe may be both evolving and developing, the more we can open our eyes to hidden processes that are protecting and driving us toward a particular, predetermined future, even as each individual and civilization on Earth and in the universe will take its own partly unpredictable and creative evolutionary paths to that developmental future.

Fourth, we gain an understanding of universal purpose. Talk of purpose legitimately scares most scientists, who are so recently free of religion interfering in their work. They claim they don’t want to return to a faith-based view of the world, but we all must have, and should constantly revise and keep parsimonious our own personal set of faiths (for example, our scientific axioms), as human reason and intuition, no matter how powerful they become, will always be computationally incomplete. Unexamined faiths are of course the most dangerous kind. Evolutionists put a lot of unexamined and unrecognized faith in their purposeless universe model, so much that it can blind them to the value of admitting and exploring the unknown. Many scientists attack hypotheses of universal teleology wherever they find them – even as they live in a world that they clearly know is predictable in part. We must call that stance hypocrisy, as predictability is a basic form of teleology, or purpose. Evolutionary and behavioral psychologists are now proposing biologically-inspired scientific theories of human values. I recommend The Moral Landscape, by Sam Harris, 2011, which I’ve reviewed earlier.  But most of this work still is not deeply biologically-inspired, as it remains focused on evolution, ignoring development. We must recognize that a better understanding of universal evolution and development can help science derive more useful and more universal evolutionary and developmental values. I believe it is both the best definition and the purpose of humanity to use technology to continually reshape us, individually and collectively, into something more than our biological selves, and to do this in as deliberate and ethical a way as possible, using both evolutionary and developmental means. We can further realize that it appears to be our universal purpose to think, feel, act, and build in ways that maximize our intellectual and emotional intelligence, advancing our minds and hearts.

Fifth, we recognize that very important parts of the future are predictable. This benefit is the most useful to me as a professional futurist. Increasingly, we find foresight practitioners who accept the likelihood of developmental futures. Consider Pierre Wack at Royal Dutch/Shell’s foresight group, who proposed the inevitable TINA (There Is No Alternative) trends in economic liberalization and globalization in the 1980’s. Or Ron Inglehart and Christian Welzel, who have charted the inevitable developmental advance (with brief and partial evolutionary reversals) of evidence-based rationalism and personal freedom in all nations over the last 50 years.  Some leading recent books arguing for the inevitability of certain kinds of social development are Robert Wright’s Nonzero, 2000 (on positive sum rulesets), Steven Pinker’s The Better Angels of Our Nature (on violence reduction) and Ian Morris’sThe Measure of Civilization, 2013 (on the predictable dominance of civilizations that are leaders in energy capture, social organization, war-making capacity, and information technology). There are still far too many professional futurists who confidently and ignorantly claim that the future is entirely evolutionary (“cannot be predicted”). But a growing number of leaders, strategists, and futurists see regionally and globally dominant trends and inevitable convergences, make good predictions, and use increasingly better data and feedback to improve their models.

Great New Book on Prediction

Great New Book on Statistical Social Prediction

For a good recent book on this, read Nate Silver’s excellent The Signal and the Noise: Why So Many Predictions Fail But Some Don’t, 2012. As we learn take an evolutionary developmentalist perspective, at first unconsciously and later consciously, we will greatly grow our predictive capacity in coming decades. More of us will foresee, accept, and start managing toward the ethical emergence of such inevitable coming technological developments as the conversational interface and big data, deeply biologically-inspired (evo and devo) machine intelligence and robotics, digital twins (intelligent software agents that model and represent us) and the values-mapped weblifelogs and peak experience summaries, the wearable web and augmented reality, teacherless education, internet television, and the metaverse. Professional futurists and forecasters are now developing our first really powerful tools and models that will keep expanding our prediction domains and horizons, and improving the reliability and accuracy of our forecasts. I believe evolutionary developmentalism is a foundational model that all long range forecasters and strategists need to embrace. Not only must we realize there are possible and preferable futures ahead of us, but we must be convinced that there are inevitable and highly probable futures as well, futures which can increasingly be uncovered as our intelligence, data, and methods improve. Such an effort, at a species level, is the only way we can map what remains truly unpredictable, at each level of our collective intelligence.

We’ve got a long way to go before modern science is willing to give the developmentalist perspective the same consideration and intellectual honesty that we presently give the evolutionist perspective. A lot of papers will have to be published. A lot of arguments will have to be made, and evidence marshaled. Courageous scientists will have to build the bridge from the developmentalist aspects of physics, chemistry, and biology to the highest aspects of our humanity, our ethics, consciousness, purpose, and spirituality. Convergent Evolution is one of several fields that will win lots of converts to developmentalism as it advances. Astrobiology will likely also play a big role, if it shows us just how common our type of life is in the universe, as many suspect it will.

A Classic in Foresight Literature - Parts of the Future are Quite Predictable

A Classic in Business Foresight – Parts of the Future are Quite Predictable. Ignore at Your Peril.

Fortunately, as futurist Alvis Brigis noted to me in a recent conversation, many of the world’s leading companies are already surprisingly developmentalist in their strategy and planning. We can trace this shift back at least to Pierre Wack’s strategy group at Royal Dutch/Shell in the 1980’s, as discussed in Peter Schwartz’s The Art of the Long View, 1996, a classic in business foresight. Wack realized that in order to do good scenario planning (exploring “what could happen”, and the best strategic responses to major uncertainties) one should first constrain the possibility space by understanding what is very likely to continue to happen in the larger environment.  To restate this in evo-devo language, Wack recommended starting with developmental foresight (finding the apparently “inevitable” macrotrends), and then doing evolutionary foresight (exploring alternative futures) within a testable developmental frame. Treating both evo and devo foresight perspectives seriously is a key challenge for strategy leaders. Many management and foresight consultancies are good at one, but not the other, as it’s a lot easier to pick one perspective as your dominant framework than to have to continually figure out how to integrate two opposing processes. Yet both are critical to understanding and managing change.

I do technology foresight consulting for several companies, and follow foresight work at the consultancies, and I’m convinced that those companies with the best predictions, forecasts, and foresight processes interfacing with their strategic planning groups are winning increasingly large advantages in their markets every year. All the most successful companies realize there are many highly predictable aspects of our future, and collectively our business and government leaders are now betting trillions annually on their predictions. A few are using good foresight processes, but most are still flying by the seat of their pants.

The executives leading our most successful companies don’t see the world as a random accident, like an evolutionist, or some naive and self-absorbed postmodernist who lives off the exponentiating wealth and leisure of the very same science and technology that he argues are “not uniquely privileged perspectives” on the universe. Let’s hope our young scientists in coming years have the courage to be as developmentalist in their research, strategy, and perspective as our leading corporations are today. And as our biologically-inspired intelligent machines, destined to be faster and better at pattern recognition than us, will be a few decades hence. Will modern science recognize the evolutionary developmental nature of the universe before human-surpassing machine intelligences arrive and definitively show it to us? That is hard to say. But I believe we can predict with high probability that as mankind continues its incredible rise, our leaders, planners, and builders must become evolutionary developmentalists if we are to learn to see reality through the universe’s eyes, not just our own.

Further Reading

For a more detailed treatment of evolutionary developmentalism, with references, you may enjoy my scholarly article, Evo Devo Universe?, 2008 (69 pp. PDF), and for applications of evo-devo thinking to foresight, Chapter 3, Evo-Devo Foresight (90 pp.), of my online book, The Foresight Guide, 2018.

For a speculative proposal on where accelerating change may take intelligence, as a universal developmental process, see my paper The Transcension Hypothesis, 2012 (and the lovely 2 min video summary by Jason Silva). This hypothesis speculates, and offers preliminary evidence and argument, that black holes may be developmental attractors for the future of intelligent life throughout the universe.

I wish you the best in your own foresight journey, and that your thoughts and actions help you, your families, and your organizations to evolve and develop as well, every day, as this amazing universe will allow.