Evo Devo Universe, and Universal Progress

The practice of evolutionary developmental foresight (evo devo foresight) seeks to understand which things and processes in our universe, on Earth, and in human society and technology are evolutionary (creative, uniquely adaptive, divergent, and unpredictable) and which are developmental (conservative, constraining, convergent, and statistically predictable). The better we understand the creative (chance-based) and the convergent (necessity-based) processes in our world, the better our theories of progress become. We improve our concepts of individual, organizational, and social progress, and begin to see them in universal terms, as elements of a process of universal progress. This gives us the best grounding we could have for understanding the meaning, purpose, and priorities of our lives. For more, see EvoDevoUniverse.com

The Tangled Tree isn’t So Tangled – Telling the Story of Molecular Convergent Evolution

The Tangled Tree, David Quammen (2019)

I have just read David Quammen’s The Tangled Tree: A Radical New History of Life (2019). It is a beautifully written book on molecular phylogenetics. Quammen has written over a dozen books on the life sciences, and he is a great storyteller and science journalist.

I recommend this book, with one serious reservation. It describes a purely evolutionary view of molecular phylogenetics. Quammen unfortunately entirely ignores convergent evolution, and thus never allows the reader to consider its implications for universal development. He also does not discuss evo-devo biology. If he had, he might have recognized just how constraining accretive processes of biological development must be on all macrobiological evolutionary change.

Consider the fact that all complex animals, including humans, share almost all the same basic developmental regulatory machinery found in much simpler organisms than us. Like a tree that grows outward from a central trunk, we can’t update our developmental code as we grow more complex. We can only add to that code, progressively limiting our morphological and functional options in evolution. Constraining factors like accretive regulatory development and convergent evolution are physical realities we must recognize if we are to understand long-range macrobiological change on Earthlike planets.

Convergent evolution in antifreeze proteins in Arctic and Antarctic fish.

Scientists have been researching the molecular phylogenetics of convergent evolution since the 1990s, when evo-devo biology first became a formal subdiscipline. For example, we’ve known since 1997 that antifreeze proteins evolved via two clearly independent genetic means in Northern and Southern polar fish, to prevent ice crystal formation.

As our science and simulation advance, I think we will discover a vast number of developmental portals, uniquely adaptive and accelerative attractors on the road to competitive complexification that must be discovered via evolutionary search in our universe. Such complexification attractors have long been proposed by developmentally-oriented thinkers. Organic chemistry, Earthlike planets, nucleic acid-, protein-, and fat-based cells, oxidative phosphorylation, multicellularity, nutrient- and waste-carrying circulatory systems, and the emergence of antifreeze in animals living in near-zero temperature habitats are just a few of many proposed examples of such adaptive attractors. I’d argue they are examples of what EDU scholar Claudio Flores Martinez calls “cosmic convergent evolution” [SETI in the light of cosmic convergent evolution, Acta Astronautica, 104(1):341–349, 2014].

Fortunately, we can increasingly investigate some of the more recent proposed attractors via molecular phylogenetics, inferring the recent genetic history of life on Earth. Some of these more recent attractors include nervous systems, which according to Flores Martinez appear to have independently emerged at least three times (in bilaterians like us, in comb jellies, and in jellyfish) using three different neurotransmitter schemes. If nervous systems are a true portal, there won’t be anything else that can be built on top of our kind of multicellularity that would give collectives a comparable competitive advantage. In bilaterians, emergences like endoskeletons, muscles, prehensile limbs, opposable thumbs, emotions, ethics, language, consciousness, and extrabiological tool use have all been proposed as additional portals that are uniquely able to support accelerating complexification in collectives in their local environments. Such universal developmental checkpoints, if they exist, must be reliably statistically accessible, dominant, and persistent when discovered via evolutionary search. Today, increasing numbers of proposed universal adaptive convergences are becoming accessible to molecular investigation.

With respect to antifreeze in polar environments we learned in the 1990s that the antifreeze gene used by a Southern fish, Antarctic cod, arose from a mutation of gene that originally coded for a digestive enzyme. But the origin of the antifreeze protein in the Northern polar fish, Arctic cod, remained unclear. This 2019 article by Ed Yong at The Atlantic describes how, after twenty more years of diligent work, Chi-Hing Christina Cheng and her group deduced the complex way that Arctic fish built their antifreeze protein. It arose from a stretch of noncoding DNA, which was duplicated, mutated, relocated next to a promoter, and then a base was deleted to make it functional. In the twentieth century, some geneticists used to think noncoding DNA was “junk”. Work like Cheng’s tells us that noncoding DNA offers life a deep pool of potential genetic and protein diversity. We’ve also found antifreeze (and many other wintering adaptations) in other cold-dwelling species, like Cucujus clavipes, the red bark beetle. I’m sure we’ll learn many more stories of convergence there as well.

If Quammen had recognized that convergent molecular phylogenetics offers an exciting new way to understand long-known morphological and functional convergence in phylogenetically unique species, just as molecular methods give us exciting new ways to understand phylogenetics, he would have done a great service to general readers and scholars alike. Morphological and functional convergences, along with some hints at genetic and molecular evo-devo pathways toward them, have long been described by scientists like Simon Conway Morris (Life’s Solution, 2004; The Deep Structure of Biology, 2008),  Johnathan Losos (Improbable Destinies: How Predictable is Evolution?, 2018, and George McGhee (Convergent Evolution: Limited Forms Most Beautiful, 2011; Convergent Evolution on Earth, 2019).

Work like this tells us that our morphological and functional tree of life (a separate concept from our phylogenetic tree) is both continually diverging, due to contingent evolutionary innovation, and continually converging, due to the existence of universal environmental optima that will inevitably discovered, on all planets with environments like ours, via evolutionary search. In important ways then, this latter tree of life is significantly less tangled than it first seems. Life, a macrobiological system with fixed and finite complexity, is going somewhere, developmentally speaking. Both evolutionary contingency and developmental inevitability are central to the story of life on Earth, and other Earthlike planets in our universe.

We started our Evo Devo Universe (EDU) research and discussion community in 2008 precisely because the story of universal development is so widely ignored and downplayed. Most scientific work today perpetuates the one-sided, evolution-only view of change and selection that is the dominant scientific narrative today. There seems to be a strong emotional commitment among some scientists to the idea of an almost entirely contingent universe. Perhaps this commitment arises because of the unsettling implications of a universe that is developing as well as evolving. If our universe is developmental, science may become not merely descriptive, but prescriptive. It may learn to tell how we may better act, to be in service to universal processes and goals.

My new paper, Evolutionary Development: A Universal Perspective (2019) is my own latest small effort to offer an opposing, evolutionary developmental perspective. For a lay article on why we appear to live in an evo-devo universe, you may enjoy my post Humanity Rising: Why Evolutionary Development Will Inherit the Future (2012).

One of the books high points is its excellent discussion of the great Carl Woese. Woese and his student, George Fox, revolutionized microbiology by realizing we could trace bacterial phylogenetics through internal “molecular fossils.” They deduced the phylogenetic taxonomy of 16S ribosomal RNA, the universal machinery of protein manufacturing. This work allowed them to classify Archea, single-celled organisms that have a more complex internal structure than bacteria. Archaea range widely on Earth, and engage in a great variety of energy metabolisms (sugars, ammonia, metal ions, hydrogen gas), unlike their simpler bacterial cousins.

Woese and Fox’s Tree of Life, 1977

Woese’s work gave us our modern phylogenetic tree of life in 1977 (picture right). This tree showed that Archea are closer in phylogenetic history to us than bacteria. It is a good bet that both eukaryotes and prokaryotes branched off from an Archea that lived in undersea geothermal vents, making energy from hydrogen gas, warm water, and underwater nutrients richly available in those vents. Chemosynthesis, in other words, likely arrived on Earth long before photosynthesis.

What’s more, life on Earth appears to have emerged almost as soon as our planet became cool enough to support liquid water. Metal-rich Earthlike planets, with plate tectonics, plentiful water, and volcanic vents, appear to be ideal catalysts for life, and our geochemical cycles are ideal buffers and cradles for stabilizing life once it emerges. The complex set of homoeostatic protections for life on Earth, aka the Gaia hypothesis, when stated without the woo of “planetary intelligence”, appear far more developmental, from a universal perspective, than the hypothesis’s many detractors like to admit.

Woese’s work also lends credence to Alexander Rich and Walter Gilbert’s RNA world hypothesis, the idea that self-replicating RNA emerged first, before DNA and proteins. RNA is one of those rare complex chemicals that can store memory of its past evolutionary variation and self-catalyze its own replication. In other words, it is autopoetic (capable of self-maintenance and self-improvement).

Another high point is the book’s discussion of horizontal gene transfer. Amazingly, it appears that about 8% of human DNA arrived sideways in our genome, not via sex or mutation but via viral infection. As Harald Brüssow reminds us in “The not so universal tree of life,” we have not yet incorporated viruses into our current trees of life. That is a major oversight. Retroviral insertion sequences are found everywhere in eukaryotic DNA. Viruses and cells are constantly exchanging genetic material, in all species. [Brüssow H. (2009). The not so universal tree of life or the place of viruses in the living world. Phil trans. Royal Soc. of London. doi:10.1098/rstb.2009.0036]


Tree of life showing vertical and (a few) horizontal gene transfers. Source: Wikipedia

Our Real Tree of Life, once we draw it to include viruses, will look even more like a network than in the figure at right. The tree drawn at right is a good step beyond Woese’s 1977 tree, but it is still much too conservative. It includes no lines between eukaryotes, for example. It ignores retroviruses and other mechanisms.  See the Wikipedia article on HGT for the great variety of DNA transfer mechanisms we’ve discovered so far.

DNA is arguably still the dominant autopoetic system on our planet today. DNA’s astonishing ability to copy, vary, and improve itself, to jump around inside the cell as transposons, to jump between cells and organisms via viral and retroviral insertion, and to use vertical methods like germline mutation and sexual recombination, has made all living species on Earth much more of a single interdependent network than most of us realize.

This is an important idea to understand, because is the genetic network, not any collection of species, that has always been the true survivor and improver in life’s story. Many past environmental catastrophes, like the Permian extinction, and the K-T meteorite impact, have wiped out the vast majority of species, but I would personally bet almost all of the diversity of the genetic network survived each of those events. This is obviously true in developmental genes, which are highly conserved. If any complex species survives a catastrophe, the developmental core of all complex species survives. But I suspect it is true for most evolutionary (nonconserved) genes as well. We shall see if the evidence from modern catastrophes bears this assertion out. Genes are typically reassorted into hardier species after each catastrophe, and those species, having no competition and ample resources, make great leaps in innovation immediately after each major catastrophe. I call that the catalytic catastrophe hypothesis, and I look forward to seeing it proven in coming years.

Interdependent networks, in other words, always win out in complex selective environments, over time. Such networks are stabler, safer, more ethical, and more capable than isolated individuals. There are deep lessons in complexity science and network science to be discovered here, lessons that tell us why our leading forms of artificial intelligence later this century will be driven to not only be deeply biologically-inspired, but also ethical, empathic, and self-regulating collectives, just like us. Complex selection and developmental optima will ensure this is so, statistically speaking, in my view.

Again, if Quammen had covered convergent molecular phyogenetics, and a bit of evo-devo and developmental genetics, he would he would have given us a better set of trees and networks to ponder. If he’d wrestled with the convergent features of biological development at the organismic scale, he might have begun to recognize it at the ecosystem scale, and help us to begin to see and ponder it too.

Life is a complex, interdependent network, but it is also going somewhere. It is developing, not just evolving. I speculate on the intrinsic goals of evo-devo systems in my 2019 paper above. It may be too early to for us to say with certainty what goals life has, as a complex evo-devo network, but it is not to early to recognize that such goals must exist, both from evolutionary and developmental perspectives.

When considered as a single interdependent network, life’s story on Earth so far has been a curiously smooth and continually accelerating trajectory of increasing complexity, stability, ability, and intelligence. Something very curious is going on in all the Earthlike, high-complexity environments in the universe. We need to start recognizing and studying it much more closely if we wish to understand accelerating change, complexity and adaptation from a universal perspective, not just our own.

Humanity Rising: Why Evolutionary Developmentalism Will Inherit the Future

Evo Devo Universe - An Interdisciplinary Research Community

Evo Devo Universe – Exploring Models of Universal Evolution and Development

An expanded version of this post was published as:
Smart, John M., Humanity Rising: Why Evolutionary Developmentalism Will Inherit the Future, World Future Review, November 2015: 116-130. doi:10.1177/1946756715601647 (SAGE: abstract). Oct 2016:
Full PDF (21 pages) is now available here.

For more on Evo Devo, see Chapter 11 (Evo Devo Foresight) of my online book, The Foresight Guide (2018).

What is evolutionary development (“evo devo”)? It is a minority view of change in science, business, policy, foresight and philosophy today, a simultaneous application of both evolutionary and developmental thinking to the universe and its replicating subsystems. It is derived from evo-devo biology, a view of biological change that is redefining our thinking about evolution and development. As a big picture perspective on complex systems, I think evo devo models will be critical to understanding our past, present, and future. The sixty-some scholars at Evo Devo Universe, an interdisciplinary community I co-founded with philosopher Clement Vidal in 2008, are interested in arguing, critiquing and testing evolutionary and developmental models of the universe and its subsystems, and exploring their variations and implications.

Whatever else our universe is, and allowing that there are physical mysteries, like dark matter, dark energy, the substructure of quarks, and the nature of black holes still to be uncovered, reasonable analysis suggests that it is both evolutionary and developmental, or “evo devo”. Like a living organism, it undergoes both experimental, stochastic, divergent, and unpredictable change, a process we can call evolution , and at the same time, programmed, convergent, conservative, and predictable change, a process we can call development. Evo devo thinking is practiced by any who realize that parts of our future are unpredictable and creative, while other parts are predictable and conservative, and that in the universe, as in life, both processes are always operating at the same time.

Does our Universe have a developmental life cycle? Evolutionary developmentalists think it may.

Like living organisms, our universe may have a developmental life cycle.

Our universe builds intelligence in a developmental hierarchy as it unfolds, from physics, to chemistry, to biology, to biominds, to postbiological intelligence. As physicists like Lee Smolin (The Life of the Cosmos, 1999) have argued, our universe may also be chained to a developmental life cycle, like a living organism. Since almost every interesting complex system we know of within the universe, from solar systems to cells, undergoes some form of replication, inheritance, variation, and selection to build its complexity, it is parsimonious (conceptually the simplest model) to suspect this is how the universe built its complexity as well, within a still poorly understood environment that physicists call the multiverse.

An evo devo universe proposes that any physical system that has both evolutionary  (divergence, variation) and developmental (convergence, replication, inheritance) features, and operates in a selective environment, will self-organize its own adaptive complexity as replication proceeds. Consider how replicating stars have advanced from the primitive Population III stars to the far more complex Population I solar systems, like our Sun and its complex planets, over galactic time. Replicating evo devo chemicals built up from nucleic acids to cells, over billions of years. Replicating evo devo cells created multicellular life with nervous systems,  again over billions of years.  Replicating evo devo nervous systems forged hominids, over roughly 500 million years. Replicating languages, ideas, and behaviors in hominid brains birthed nonbiological computing systems, over something like 5 million years. Now computing and robotics systems, whose replication is presently aided by human culture, are soon (within the next few decades, it seems) going to be able to replicate, evolve, and develop autonomously.

The evo-devo model provides an intuitive, life-analogous, and conceptually parsimonious explanation for several nagging and otherwise improbable phenomena, including the fine-tuned Universe problem, the presumed great fecundity of terrestrial planets and life, when an evolution-only framework would lead us to predict a Rare Earth universe, the Gaia hypothesis, the surprisingly life-protective and geohomeostatic nature of Earth’s environment, the unreasonably smooth, redundant and resilient nature of accelerating change and leading-edge complexification on Earth, and other curiosities. If true, it should be able to increasingly demonstrate how and why such phenomena might self-organize as strategies to ensure a more adaptive and intelligence-permitting universe, in an ultimately simulation testable model. It also provides a rejoinder to theologian William Paley’s famous watchmaker argument, that only a God could have designed our planet’s breathtaking complexity, with the curious example of replicative self-organization of complexity, a phenomenon seen in a great variety of dissipative systems on multiple scales in our universe, and one we will increasingly understand, model, and test in coming years.

As much as some might find comfort in believing in a God who designed our universe, it is perhaps even more comforting to believe, tentatively and conditionally, in a Universe with such incredible self-organizing and self-protecting features, and in the amazing history and abilities of evolutionary and developmental processes in living systems themselves. Evo devo processes have apparently created both matter and mind, and have been astonishingly resilient to generating complexity and intelligence at ever-accelerating rates. Found throughout our universe, such information-protective processes may even transcend our universe, and may have determined the first replicator, if such a thing exists. Then again, perhaps our physics and information theory will never reach back that far, and such knowledge may forever remain metaphysics. In the meantime we can say that Big History, the science story of the universe so far, is sufficiently awe inspiring, humbling, useful, and hopeful to give us guidance, once we place it in an evo devo frame. As we’ll suggest, we now know enough about evolution and development at the universal scale to begin relating these processes to our own lives, and most interestingly, to ask how we can make our values and goals more consistent with universal processes.

As our universe grows islands of accelerating local order and intelligence in a sea of ever-increasing entropy, physics tells us this process cannot continue forever. The universe’s “body” is aging, and will end in either heat death, or a big rip, or both. If our universe is indeed a replicating complex adaptive system that engages in both evolution and development, as it grows older it must package its intelligence into some kind of reproductive system, so it’s complexity can survive its death and begin again. Developmental models thus argue that intelligent civilizations throughout the universe are part of that reproductive system – protecting our complexity and ultimately reproducing the universe and further improving the intelligence it contains. In other words, growing, protecting, and reproducing personal, family, social, and universal intelligence may be the evolutionary developmental purpose of all intelligent beings, to the greatest extent that they are able.

Charles Darwin - Father of Evolutionary Theory

Charles Darwin, On the Origin of Species, 1859

Beginning in 1859, Charles Darwin helped us to clearly see evolutionism in living systems, for the first time. Discovering that humanity was an incremental, experimental product of the natural world was a revolutionary advance over our intellectually passive, antirational and humanocentric religious beliefs. But until we also understand and accept developmentalism, recognizing that the universe not only evolves but develops, the purpose and values of the universe, and our place in it will remain high mysteries about which science has little of interest to say. Our science will remain infantile, descriptive without also being prescriptive, and unable to deeply inform our morality and politics. That must and will change in coming decades.


Curiosity – A Discover Channel TV Series

As an example of where we are today, I just watched a Discovery Channel program on evolution, Mankind Rising, available for $1.99 at YouTube It is Season 2, Episode 8 of Curiosity a new educational television series launched by Discovery founder and chairman John HendricksCuriosity is a five-year, multi-million dollar initiative to tackle fundamental questions and mysteries of science, technology, and society, in sixty episodes. There is also a commendable Curiosity initiative in American K-12 schools, to use the show to increase our children’s engagement in STEM education.


Mankind Rising – Season 2, Episode 8 of Curiosity

Mankind Rising considers the question “How did we get here?” It tells the journey of humanity from the cooling of life’s nursery, Earth, 4 billion years ago, and the emergence of the first cell 3.8 billion years ago, to Homo erectus, anatomically modern humans, 1.8 million years ago. It does this in one 43 minute time-lapsed computer animation, the first time our biological history has received such a treatment, as far as I know. The animation is primitive, but it holds your interest enough to follow the story. And what an amazing story it is.  We see a lovely visualization of the Phylogenetic hypothesis, which proposes that human hiccups are a holdover from our amphibian ancestry, when we gulped air at the surface across our gills, which are now vestigial (think of pharyngeal pouches in human embryos), before we grew lungs. Human babies do a lot of gulping-hiccuping both in utero and when born prematurely, and both amphibian gill-gulping and human hiccups are stopped by elevated carbon dioxide, hence the folk remedy to breathe into a bag to stop them.

We also get to see the rise of the first tool users, Homo habilis, 4 million years ago, in a dramatic sequence where an early human strikes one rock against another and is fascinated to discover a sharp rock in his hands. H. habilis’ ability to hold sharp rocks and clubs in their hands, and use them imitatively in groups to defend against other animals was perhaps the original human event. The best definition of humanity, in my opinion, is any species that gains the ability to use technology creatively and socially to continually turn themselves into something more than their biological selves. We inevitably become a species with both greater mind (rationality, intellect) and greater heart (emotion, empathy, love), two core kinds of intelligence. I would predict the first collaborative rock-users on any Earth-like planet must soon thereafter become its dominant species, as there are so many paths to further adaptiveness from the powerful developmental duo of creative tool use and socially imitative behavior.


Homo habilis, perhaps the first persistence hunters.

One clever thing that the first socially-adept rock- and club-holding animals on any Earth-like planet gain access to is pack hunting (and if good at sweating, a form of pack hunting called  persistence hunting). Learning both how to pack hunt and how to tame fire, as described in Richard Wrangham’s Catching Fire: How Cooking Made Us Human, 2010, may have doubled our brain size by giving us our first reliable access to meat, a very high-energy fuel source. We may have begun with pack hunting by ambush, which chimpanzees do today, and then graduated to persistence hunting, or running down our prey, sometimes in combination with setting fires to flush out our prey. We primates sweat across our entire bodies, not just through our mouths like other mammals. Humans have developed our sweating and cooling ability the best of all primates by far. As a result, two or three of us working together can actually run to heat exhaustion any animals that can’t sweat, if we hunt them in the mid-day sun.  Some peoples persistence hunt even today, as seen in this amazing seven minute Life on Earth clip of San Bushmen running down a Kudu antelope (!!) in the Kalahari desert. Mankind Rising ends with Homo erectus (“human upright”), possibly the first language-using humans, 1.8 million years ago. We don’t yet have fossil evidence their larynx was anatomically modern, but there are indirect arguments.  Language, both a form of socially imitative behavior and a fundamental tool for information encoding and processing, was very likely the final technology needed to push our species from the animal to the human level.

In Evolutionism, the Universe is a massive set of Random Events, Randomly Interacting.

In Evolutionism, the Universe is a Massive Set of Random Events, Randomly Interacting.

Unfortunately, there are serious shortcomings to Mankind Rising as an educational device. The show’s narrative, and the theory it represents, are the standard one-sided, dogmatically-presented story of life’s evolution, with no hint of life’s development. As a result, it treats humanity’s history as one big series of unpredictable accidents. This is the perspective of universal evolutionism, also called “Universal Darwinism” ”, which considers random selection to be the only process in universal change, ignoring the possibility of universal development. In evolutionism, all the great emergence events are told as happening randomly and contingently. The show even makes the extreme claim that life itself emerged “against the laws of probability.” The emergence of humanlike animals is also presented as a stroke of blind luck, because the K-T meteorite wiped out our predators, the dinosaurs. All of this is true in part, only from one set of perspectives, that of the individual, organism, or individual event. In other words this story, and evolutionism in general, is a dangerously incomplete half-truth.

When we look at the same events from the perspective of the universal system, the environment, or distributions of events over time, we can easily argue that many particular forms and functions appear physically predetermined to emerge. Consider two genetically identical biological twins, or two snowflakes. Most of what happens to them up close, at the molecular scale, is randomly, contingently, unpredictably different. The microstructure of all the twin’s organs, including their brain, fingerprints, and many other molecular features are as different as the designs on two snowflakes. But look at them from across the room, taking a system or environmental perspective, and you see that they achieve many of the same developmental endpoints over time. The twins have the same body and facial structure and many of the same personality traits, constrained by the organism’s developmental genes and the shared environment. The snowflake’s hexagonal structure is developmentally predetermined, constrained by the way water forms hydrogen bonds as it freezes.

Just like biological development, universal development happens because of the special initial conditions (physical laws, or “genes”) of our universe, the time constancy and environmental sameness (isotropy) of some physical law throughout the universe/system/environment, and the apparent commonness (ubiquity) of Earth-like planets in our universe, a suspicion that will hopefully be proven by astrobiologists in coming years. Examples of developmental processes and structures are easy to propose. We can see developmental physics in the motions of the planets, which are highly future-predictable, as Isaac Newton discovered. Other physical processes, such as the production of black holes in general relativity, the acceleration of entropy production, and of complexification in special locations, also appear highly predictable and universal. Other physics by contrast, such as quantum physics, looks highly evolutionary and unpredictable. As we move up the complexity hierarchy from physics to chemistry to biology, to society, our list of potential evolutionary and developmental forms and processes rapidly grows.

In Developmentalism, Certain Systemic Forms and Functions are Statistically Fated to Emerge in the Universe, as in Biological Development

In Developmentalism, Certain Universal Forms and Functions are Statistically Fated to Emerge, as in Biological Development

Convergent form and function in placental and marsupial mammals - a famous example of convergent evolution, or better, convergent evolutionary development.

Convergent form and function in placental and marsupial mammals – a famous example of convergent evolution, or better, convergent evolutionary development.

Other examples of inevitable, ubiquitous developments in our universe may include organic chemistry as the only easy path to complex replicating autocatalytic molecular species. Earth-like planets with water, carbon and nitrogen cycles (plate tectonics), nucleic acids, lipid membranes, amino acids, and proteins as the only easy path to cells (testable by simulation). Oxidative phosphorylation redox chemistry as the only easy path to high-energy chemical life. Multicellular organisms, bilateral symmetry, eyes, skeletons, jointed limbs, land colonization, opposable thumbs, social brains, gestural and vocal language, and imitative behavior as the only easy path to runaway technology (tool use). And similar unique developmental advantages to written language, math, science, and various technology archetypes, from sharp rocks and clubs to levers, wheels, electricity, and computers. These potentially universal forms and functions may be destined to emerge, because of the particular initial conditions and laws of the universe in which evolution is occurring, and each are destined to become optimal or dominant, for their time, in environments in which accelerating complexification and intelligence growth are occurring.

On Earth, we have seen a number of these forms, such as eyes, emerge and persist independently in various separate evolutionary lineages and environments. Independent emergence, convergence, and optimization or dominance of developmental forms and processes is one good way to separate them from the much larger set of ongoing evolutionary experiments. Developmental forms and functions are those that will be more adaptive at each particular stage of environmental complexity, in more contexts and species. Think of two eyes for a predator, over three or one eye. Or four wheels for a car, over three or more than four wheels. Or all the body form and function types that converged in placental and marsupial mammals. Australia separated early from the other continents, yet produced many similar mammal types via marsupials, plus a few new ones, like the kangaroo. This is a classic example of convergent evolution, or more accurately, convergent evolutionary development, when we examine biological change from the planet and universe’s perspective.

Evolution is destined to randomly, contingently, and creatively but inevitably discover these optimal developmental forms and functions, in most environments. For more on evolutionary developmentalism, feel free to read my 50-page precis, Evo Devo Universe?, 2008, and let me know your thoughts.

Would Raptors Have Led Inevitably to Dinosaur Humanoids, if the K-T Meteorite Hadn't Hit 65 Mya? - The Dinosauroid Hypothesis, one of several Developmentalist proposals, yet to be tested.

Would Raptors Have Led Inevitably to Dinosaur Humanoids (Dinosauroids), if the K-T Meteorite Hadn’t Hit 65 Mya? That is the Dinosauroid Hypothesis, a Developmentalist Proposal.

As another example ignored by the show, several evolutionary developmentalists have independently proposed that our very-easy-to-create-yet-general-purpose  “humanoid form”, a bilaterally symmetric bipedal tetrapod with two eyes and two opposable thumbs, is a very likely outcome for all biological intelligences that first achieve our level of sophistication on all Earth-like planets. If we saw such “early” alien intelligences from across a dimly lit room, they would they look roughly like us, as the astrophysicist Frank Drake, author of the Drake equation, has argued. But while we can use science and simulation to argue their existence, in my view we have virtually no chance to meet other biological organisms in the flesh. Why? Because the universe does a very good job of separating all the evolutionary experiments by vast distances, uncrossable by biological beings. Our universe may have self organized to have its current structure in order to maximize the diversity of intelligences created within it, as I argue in my 2008 paper. No intelligence is ever Godlike, so diversity is our best strategy for improving our lot. Another reason we’ll likely never meet biological beings from other Earthlike planets is because the leading edge of life on Earth is now rapidly on the way to becoming postbiological, and postbiologicals are likely to have very different interests than traveling long distances through slow and boring outer space, when there are much better options apparently available in “inner space,” as I argue in my 2012 paper.

In other words, our own particular mammalian pathway to higher intelligence has likely given us a unique evolutionary pathway to our developmental humanity, one with great universal value. Our civilization has likely discovered and created some things you won’t find anywhere else in the universe. But at the same time, if the K-T meteorite hadn’t struck us 65 mya, it is easy for an evolutionary developmentalist to argue that dinosaurs like Troodon would have inevitably discovered the humanoid form, rocks, language, and tools, and we might have looked today like that green-skinned humanoid in the picture above. Why?

If you have seen the movie Jurassic Park, or have read up on raptors like Troodon, you know that they had semi-opposable digits and hunted in packs, in both the day and the night. It is easy to bet that the first raptor descendants that also learned how to hold sharp rocks and clubs in their hands in close-quarters combat would have forever after owned the role of top biological species. It would be game over, and competitive exclusion, for all other species that wanted that niche. Once you are manipulating tools in your hands, and speaking with your larynx, it’s easy to imagine that your body is forced upright, and your tail is no longer useful. You are engaged in runaway complexification of your social and technical intelligence – you’ve become human, and the leading edge of local planetary intelligence has jumped to a higher substrate. Dale Russell, author of the Dinosauroid hypothesis in 1982, was scoffed at by conventional evolutionists back then, and the model is still largely ignored today, see for example Wikipedia’s short and evolutionist-biased paragraph on it. This response from the scientific community is predictable, given the hornet’s nest of implications that evolutionary developmentalism introduces, including all the deficiencies in current cosmology of our understanding of the roles of information, computation, life and mind.

The hand of Stenonychosaurus inequalis, with a partly opposable digit.

The hand of Troodon inequalis, with a partly opposable digit.

Note the closeup of the hand of Stenonychosaurus (now called Troodon) inequalis, from Russell’s paper,“Reconstructions of the small cretaceous theropod Stenonychosauris inequalis and a hypothetical dinosauroid,” Dale A. Russell and Ron Séguin, Syllogeus, 37, 1982. The authors state the structure of the carpal block on Troodon’s hands argues that one of the three fingers partially opposed the other two as shown. The shape of the ulna also suggests its forearms rotated. It probably used its hands to snatch small prey, and to grab hold of larger dinosaurs while ripping into them with the raptorial claw on the inside of each of its feet. Troodon was a member of a very successful and diverse clade of small bipedal, binocular vision dinosaurs with one free claw on their feet, the Deinonychosaurs (“fearsome claw lizards”). These animals lived over the last 100 million years of the 165 million years of dinosaur existence, and were among the smartest and most agile dinosaurs known, with the highest brain-to-body ratios of any animals in the Mesozoic era. Most Deinonychosaurs had arms that were a useful combination of small wings and crude hands consisting of three long claws. Troodon was in a special subfamily that had lost the wings but retained the three long digits on each hand. According to Russell, Troodon’s brain-to-body ratio was the highest known for dinosaurs at the time. Because of their special abilities, I would argue that Deinonychosaurs  were not only members of an evolutionarily successful niche, they also occupied an inevitably successful developmental niche as well.

The assumption here, made by a handful of anthropologists and evolutionary scholars over the years, is that trees are a key niche, the “developmental bottleneck,” through which the first rock-throwing and club-wielding imitative hominids will very likely pass, on a typical Earth-like planet. Swinging from limb to limb requires very dextrous hands, and just as importantly, a cerebellum and forebrain that can predict where the body will go in space. With their manipulative hands, with or without wings, their big, strong legs and multipurpose feet, yet their small size, Deinonychosaurs would have been impressive tree climbers, able to get rapidly up and down from considerable heights. If they were the largest and strongest animals physically capable of doing so, which seems likely, this argues that they would have permanently occupied the special niche that primates would later inhabit. Imagine primates trying to get into the all-important tree niche with Deinonychosaurs running about. Good luck! Deinonychosaurs would have achieved “competitive exclusion”, the ability to permanently deny other species access to the critical transitional niche that was the gateway to significantly more intelligent and adaptive life. Much later, Homo sapiens achieved competitive exclusion by being the first to achieve runaway language and tool use, using these to deny all other primates access to more intelligent and adaptive social structures, including our closest competitors, Homo neanderthalensis and others.

So if  tree climbing and swinging is the fastest and best way to build grasping hands and predictive brains good at simulating complex trajectories (a claim testable by future simulation) and eventually, modeling and imitating the mental states of others in their pack so they could do imitative tool use (the next critical developmental bottleneck leading to planetary dominance for the first species to do so, also testable by future simulation), then if Deinonychosaurs dominated that niche, it is reasonable to expect a Deinonychosaur to be the first to make the jump to tool use. Troodon couldn’t swing in the trees, but he would have been very agile among them, able to use them for escape and evasion. He had two manipulative hands that would have been very useful both in killing and in avoiding being killed. This looks to me like a potential case for competitive exclusion. The hypothesis to test is that tree environments are the dominant developmental place on land to breed smart, socially-imitative and tool-using species, just as land appears to be the dominant developmental place for the emergence of species that use built structures, on any Earth-like planet.

One might ask, couldn’t tool use under water grow to reach competitive exclusion first? Apparently not. Unlike air, water is a very dense and forceful fluid relative to the muscles of species that operate within it, gravity doesn’t hold down aqueous structures or animals very well, and language may not allow for the same degree of phonetic articulation underwater as well as it does in air. But underwater tool using collectives do exist. Dolphins use sponges in collectives, and the master observer Jacques Cousteau discovered in the 1980s that octopi used rocks as tools, in large socially imitative groups. Like their eyes and brains, two of their eight appendages are prehensile with bilateral symmetry, meaning they are specially neurologically wired to oppose each other in grasping and wielding objects, just like human arms and hands (developmental convergence). Octopi even occasionally built large groups of small huts for themselves out of rocks, but their collective rock use could not make them the dominant species under water, due to its harsher physics compared to air. Thus it seems very likely that runaway tool use must happen with very high probability on land first, on all Earth-like planets. Again, this developmental hypothesis will eventually be testable by simulation.

The universe, from this perspective, seems developmentally fated for the fastest-improving language-capable tool-using species to emerge on land, in a breathable atmosphere, not under water. This new selection environment of cultural evo devo, selecting for more complex language and more useful social collectives, is sometimes called memetic evolutionary development, using Richard Dawkin’s concept of the meme as any elemental mentally replicating behavior or idea.

We must recognize that memetic change is always accompanied by another selection environment, technological evo devo, which starts out very weak at first but becomes increasingly dominant, because our social ideas always lead to ways to use technologies (things outside our bodies) to achieve our goals, and those technologies inevitably become smarter, more powerful and more efficient than biological processes, which are very limited by the fragile materials (peptide bonds) from which they are made.

Susan Blackmore’s calls any elemental socially replicating technological form or algorithm a teme. So we must realize that both memetic and temetic evo devo always go together in leading animals, on any Earthlike planet. Once these new replicators (social ideas/behaviors and technologies/algorithms) emerge, biological evo devo (genetic change) soon becomes so slow and modest by comparison that its further changes become increasingly future irrelevant, relative to memes and temes. As much as we love our ecosystem and should strive to protect it, it is where ideas and technologies are taking us today, not biology, that drives the future of our civilization.

Simon Conway Morris - A Leading Evolutionary Developmentalist (though he might not use that term :)

Simon Conway Morris – A Leading Evolutionary Developmentalist (but he might not use that term) 🙂

In the years since Russell’s indecent proposal, hundreds of other scientists, including the paleontologist Simon Conway Morris (Life’s Solution, 2001 and The Deep Structure of Biology, 2008) have proposed that humanity’s most advanced features, including our morality, emotions, and tool use, have all been independently discovered, to varying degrees, in other vertebrate and invertebrate species on Earth. Let us at this point acknowledge but also ignore Conway Morris’s Christianity, as his particular religious beliefs are his own business, and are not relevant to his scientific arguments, as his secular critics should honestly acknowledge. According to Conway-Morris, if something catastrophic happened to Homo sapiens on Earth, it seems highly probable that another species would very quickly emerge to become the dominant “human” tool-users in our place. In other words, local runaway complexification seems well protected by the universe.

In evo devo language, we can say there appears to be a developmental immune system operating, to ensure that human emergence, and re-emergence if catastrophes like the K-T meteorite occur, will be both a very highly probable and an accelerating universal event, on any Earth-like planet. Only the quality of our present transition to postbiological status seems evolutionary, based on the morality and wisdom of our actions. Our pathway to and our subtype of humanity may thus be special and unique, but our humanity itself, in many of its key features, seems to be a product of the universe, far more than a product of our own free choice. Learning to see, accept, and better manage all this hidden universal development, and in the process bringing our personal ego, fears, and illusions of control back down to fit historical reality, are among the greatest challenges humans face in understanding the true nature of the universe and our place in it.

Fortunately, these and other developmentalist hypotheses can increasingly be tested by computer simulation, as our computing technology, historical data, and scientific theory get progressively better. Run the universe simulation multiple times, and anything that appears environmentally dominant time and again, and any immunity that we see (statistical protection of accelerating complexity), is developmental. The rest, of course, is creative and evolutionary. To recap our earlier example, hexagonal snowflake structure will be developmental on all Earth-like planets with snow. But the pattern on each snowflake  will be evolutionary, and unpredictably unique, both on Earth and everywhere else. Nature uses both types of processes to build intelligence.

An Evo Devo Universe isn't a Ladder of Life (above), or a Blind Watchmaker, but some combination of the two.

In Evolutionary Development, the Universe is not just a Ladder of Nature (above), or a Random Experiment (standard Evolutionary theory), but some useful combination of the two simpler models.

Let me stress here that evolutionary development is no return to the Aristotelian scala naturae (Ladder of Nature, Great Chain of Being), where all important matter and process are predestined into some strict hierarchy of emergence. Only the developmental framework of universal complexification is statistically predetermined to emerge in evo devo models, not the evolutionary painting itself, which is the bulk of the work of art. Remember the all-important differences in tissue microarchitecture and mental processes between two genetically (developmentally) identical twins. Nor is an evo devo universe a Newtonian or Laplacian “clockwork universe” model, which proposes total physical predetermination, though it is a model with some statistically clockwork-like features, including the reliable timing of various hierarchical emergences throughout the universe’s lifespan and death, just as we see in biological development).

Consider that both the Aristotelian and Lapacian models of the universe are not real models of development (statistically predetermined emergence and lifecycle) but rather a caricature of development, one-sided views that allow no room or role for evolution. They are as incomplete in describing the whole of an evo devo universe as neo-Darwinian theory is today.

Nor is an evo devo universe the random, deaf-and-dumb Blind Tinkerer that universal evolutionists like Richard Dawkins (The Blind Watchmaker, 1996) or the writers of Mankind Rising portray. It appears that our universe is significantly more complex, intelligent, resilient, and interesting than all of these models suppose – it is predictable in certain critical parts that are necessary for its function and replication, and it is intrinsically unpredictable and creative in all the rest of its parts. Furthermore, unpredictable evolution and predictable development may be constrained to work together in ways that maximize intelligence and adaptation, both for leading-edge systems, and for the universe as a system.


A Good Overview of Evo-Devo Biology

 Evo-devo biology is an academic community of several thousand theoretical and applied evolutionary and developmental biologists who seek to improve standard evolutionary theory by more rigorously modeling the way evolutionary and developmental processes interact in living systems to produce biological modules, morphologies, species, and ecosystems.  Books like From Embryology to Evo-Devo, 2009, and Convergent Evolution: Limited Forms Most Beautiful, 2011, are great intros to this emerging field. I expect most evolutionary developmental biologists would agree with the statement that evolution and development are in many ways opposite and equally fundamental processes in complex living systems, and that neither can be properly understood without reference to its interaction with the other.

If you doubt the idea of universal development, read this 2011 book!

If you doubt the idea of universal development, read this great 2011 book!

The best of this work realizes there are two key forms of selection and fitness landscapes operating in natural selection – evolutionary selection, which is divergent and treelike, with chaotic attractors, and developmental selection, which is convergent and funnel-like, with standard attractors. Thus evolutionary developmentalism is an attempt to generalize the evo-devo biological perspective to nonliving replicating complex adaptive systems as well, including solar systems, prebiological chemistry, ideas, technology, and in particular, to the universe as a system.

Let’s close this overview with one revealing example of the interaction of evolution and development. In biological systems, the vast majority of our genes, roughly 95% of them, are evolutionary, meaning they change randomly and unpredictably over macroscopic time, continually recombining and varying as species reproduce. Only about 3-5% of our genes control our developmental processes, and those highly conserved genes, our “developmental genetic toolkit“, direct predictable changes in the organism as it traces a life cycle in its environment. As I’ve argued before, as a 95%/5% Evo/Devo Rule, roughly 95% of the processes or events in a wide variety of complex adaptive systems, including organizations, societies, species, and the universe may turn out be creative bottom-up and evolutionary, and only 5% may be predictable top-down, and developmental, though this evo devo ratio must surely vary by system to some degree. The generic value of a 95/5 Rule in building and maintaining intelligent systems, if one exists, would explain why the vast majority of universal change appears to be bottom-up driven, evolutionary and unpredictable in complex systems, what systems theorist Kevin Kelly called Out of Control in his prescient 1994 book. Yet a critical subset of events and processes in these systems also appears to be top-down/systemically directed, developmental, and intrinsically predictable, if you have the right theory, computational resources, and data. Discovering that developmental subset, and differentiating it from the much larger evolutionary subset, will make our world vastly more understandable, and show how it is constrained to certain future destinies, even as creativity and experimentation keep growing within all the evolutionary domains.

So what do we gain from conditionally holding and exploring the hypothesis of universal evolutionary development? Quite a lot, I think:

First, we regain an open mind. Rather than telling humanity’s history from a dogmatic and one-sided perspective, and assuming that our past existence in the universe is predominantly a “random accident,” we remember that there are many highly predictable things about our universe, such as classical mechanics, the laws of thermodynamics, and accelerating change. This allows us to present life’s story as a mystery: What parts of its emergence are very highly probable, or statistically predetermined? What parts are improbable accidents? We lose our blind faith that neo-Darwinism explains all of life or the universe, and we realize that there appears to be a balance between evolutionary experiment and developmental predetermination in all things in the universe, as in life.

Second, we regain our humility. We no longer see ourselves as either miraculous creations or extremely improbable accidents. We recognize that there are likely vast numbers of human communities in the universe, which has self organized to produce complex systems like us, and our postbiological descendants. It is commonly suggested that we are incredibly unique in the universe, and that we emerged “against astronomical odds.” On the contrary, developmentalists suspect that many or all of the things we hold most dear about humanity, including our brains, language, emotions, love, morality, consciousness, tools, technology, and scientific curiosity, are all highly likely or even inevitable developments on Earth-like planets all across the universe. This kind of thinking, looking for our universals as well as our uniquenesses, moves us from a Western exceptionalism frame of mind to one that also includes an Eastern or Buddhist perspective. We may not only be unique and individual experiments, but we may also be members of a type that is as common as sand grains on a beach, instruments of a larger cycle of universal development and replication.

Third, we lose our unjustified fearfulness of and pessimism toward the future, and replace it with courage and practical optimism. The evolutionary accident story of humanity teaches us to be ever vigilant for things that could end our species at any moment. Vigilance is adaptive, but fear is usually not. We are constantly reminded by evolutionists that 99% of all species that ever lived are extinct (yes, but they were all necessary experiments, and their useful information lives on), and we live in a random, hostile and purposeless universe (no). Evolutionists conveniently forget that the patterns of intelligence in those species that died are almost all highly redundantly backed up in the other surviving organisms on the planet. Life is very, very good at preserving relevant pattern, information, and complexity, and now with science and technology, it is getting far better still at complexity protection and resiliency. When we study how complexity has emerged in life’s history, we gain a new appreciation for the smoothness of the rise of complexity and intelligence on Earth. Every catastrophe we can point to appears to have primarily catalyzed further immediate jumps in life’s accelerating intelligence and adaptiveness at the leading edge. Life needs regular catastrophe to make it stronger, and it is resilient beyond all expectation. What causes this resilience? Apparently a combination of evolutionary diversity and developmental immune systems, and we still undervalue the former, and are mostly ignorant of the latter. If the universe is developmental, we can expect it has some kind of immune systems protecting its development, just as living systems do. The more we are willing to consider the idea that the universe may be both evolving and developing, the more we can open our eyes to hidden processes that are protecting and driving us toward a particular, predetermined future, even as each individual and civilization on Earth and in the universe will take its own partly unpredictable and creative evolutionary paths to that developmental future.

Fourth, we gain an understanding of universal purpose. Talk of purpose legitimately scares most scientists, who are so recently free of religion interfering in their work. They claim they don’t want to return to a faith-based view of the world, but we all must have, and should constantly revise and keep parsimonious our own personal set of faiths (for example, our scientific axioms), as human reason and intuition, no matter how powerful they become, will always be computationally incomplete. Unexamined faiths are of course the most dangerous kind. Evolutionists put a lot of unexamined and unrecognized faith in their purposeless universe model, so much that it can blind them to the value of admitting and exploring the unknown. Many scientists attack hypotheses of universal teleology wherever they find them – even as they live in a world that they clearly know is predictable in part. We must call that stance hypocrisy, as predictability is a basic form of teleology, or purpose. Evolutionary and behavioral psychologists are now proposing biologically-inspired scientific theories of human values. I recommend The Moral Landscape, by Sam Harris, 2011, which I’ve reviewed earlier.  But most of this work still is not deeply biologically-inspired, as it remains focused on evolution, ignoring development. We must recognize that a better understanding of universal evolution and development can help science derive more useful and more universal evolutionary and developmental values. I believe it is both the best definition and the purpose of humanity to use technology to continually reshape us, individually and collectively, into something more than our biological selves, and to do this in as deliberate and ethical a way as possible, using both evolutionary and developmental means. We can further realize that it appears to be our universal purpose to think, feel, act, and build in ways that maximize our intellectual and emotional intelligence, advancing our minds and hearts.

Fifth, we recognize that very important parts of the future are predictable. This benefit is the most useful to me as a professional futurist. Increasingly, we find foresight practitioners who accept the likelihood of developmental futures. Consider Pierre Wack at Royal Dutch/Shell’s foresight group, who proposed the inevitable TINA (There Is No Alternative) trends in economic liberalization and globalization in the 1980’s. Or Ron Inglehart and Christian Welzel, who have charted the inevitable developmental advance (with brief and partial evolutionary reversals) of evidence-based rationalism and personal freedom in all nations over the last 50 years.  Some leading recent books arguing for the inevitability of certain kinds of social development are Robert Wright’s Nonzero, 2000 (on positive sum rulesets), Steven Pinker’s The Better Angels of Our Nature (on violence reduction) and Ian Morris’sThe Measure of Civilization, 2013 (on the predictable dominance of civilizations that are leaders in energy capture, social organization, war-making capacity, and information technology). There are still far too many professional futurists who confidently and ignorantly claim that the future is entirely evolutionary (“cannot be predicted”). But a growing number of leaders, strategists, and futurists see regionally and globally dominant trends and inevitable convergences, make good predictions, and use increasingly better data and feedback to improve their models.

Great New Book on Prediction

Great New Book on Statistical Social Prediction

For a good recent book on this, read Nate Silver’s excellent The Signal and the Noise: Why So Many Predictions Fail But Some Don’t, 2012. As we learn take an evolutionary developmentalist perspective, at first unconsciously and later consciously, we will greatly grow our predictive capacity in coming decades. More of us will foresee, accept, and start managing toward the ethical emergence of such inevitable coming technological developments as the conversational interface and big data, deeply biologically-inspired (evo and devo) machine intelligence and robotics, digital twins (intelligent software agents that model and represent us) and the values-mapped weblifelogs and peak experience summaries, the wearable web and augmented reality, teacherless education, internet television, and the metaverse. Professional futurists and forecasters are now developing our first really powerful tools and models that will keep expanding our prediction domains and horizons, and improving the reliability and accuracy of our forecasts. I believe evolutionary developmentalism is a foundational model that all long range forecasters and strategists need to embrace. Not only must we realize there are possible and preferable futures ahead of us, but we must be convinced that there are inevitable and highly probable futures as well, futures which can increasingly be uncovered as our intelligence, data, and methods improve. Such an effort, at a species level, is the only way we can map what remains truly unpredictable, at each level of our collective intelligence.

We’ve got a long way to go before modern science is willing to give the developmentalist perspective the same consideration and intellectual honesty that we presently give the evolutionist perspective. A lot of papers will have to be published. A lot of arguments will have to be made, and evidence marshaled. Courageous scientists will have to build the bridge from the developmentalist aspects of physics, chemistry, and biology to the highest aspects of our humanity, our ethics, consciousness, purpose, and spirituality. Convergent Evolution is one of several fields that will win lots of converts to developmentalism as it advances. Astrobiology will likely also play a big role, if it shows us just how common our type of life is in the universe, as many suspect it will.

A Classic in Foresight Literature - Parts of the Future are Quite Predictable

A Classic in Business Foresight – Parts of the Future are Quite Predictable. Ignore at Your Peril.

Fortunately, as futurist Alvis Brigis noted to me in a recent conversation, many of the world’s leading companies are already surprisingly developmentalist in their strategy and planning. We can trace this shift back at least to Pierre Wack’s strategy group at Royal Dutch/Shell in the 1980’s, as discussed in Peter Schwartz’s The Art of the Long View, 1996, a classic in business foresight. Wack realized that in order to do good scenario planning (exploring “what could happen”, and the best strategic responses to major uncertainties) one should first constrain the possibility space by understanding what is very likely to continue to happen in the larger environment.  To restate this in evo devo language, Wack recommended starting with developmental foresight (finding the apparently “inevitable” macrotrends), and then doing evolutionary foresight (exploring alternative futures) within a testable developmental frame. Treating both evo and devo foresight perspectives seriously is a key challenge for strategy leaders. Many management and foresight consultancies are good at one, but not the other, as it’s a lot easier to pick one perspective as your dominant framework than to have to continually figure out how to integrate two opposing processes. Yet both are critical to understanding and managing change.

I do technology foresight consulting for several companies, and follow foresight work at the consultancies, and I’m convinced that those companies with the best predictions, forecasts, and foresight processes interfacing with their strategic planning groups are winning increasingly large advantages in their markets every year. All the most successful companies realize there are many highly predictable aspects of our future, and collectively our business and government leaders are now betting trillions annually on their predictions. A few are using good foresight processes, but most are still flying by the seat of their pants.

The executives leading our most successful companies don’t see the world as a random accident, like an evolutionist, or some naive and self-absorbed postmodernist who lives off the exponentiating wealth and leisure of the very same science and technology that he argues are “not uniquely privileged perspectives” on the universe. Let’s hope our young scientists in coming years have the courage to be as developmentalist in their research, strategy, and perspective as our leading corporations are today. And as our biologically-inspired intelligent machines, destined to be faster and better at pattern recognition than us, will be a few decades hence. Will modern science recognize the evolutionary developmental nature of the universe before human-surpassing machine intelligences arrive and definitively show it to us? That is hard to say. But I believe we can predict with high probability that as mankind continues its incredible rise, our leaders, planners, and builders must become evolutionary developmentalists if we are to learn to see reality through the universe’s eyes, not just our own.

Further Reading

For a more detailed treatment of evolutionary developmentalism, with references, you may enjoy my scholarly article, Evo Devo Universe?, 2008 (69 pp. PDF), and for applications of evo devo thinking to foresight, Chapter 3, Evo Devo Foresight (90 pp.), of my online book, The Foresight Guide, 2018.

For a speculative proposal on where accelerating change may take intelligence, as a universal developmental process, see my paper The Transcension Hypothesis, 2012 (and the lovely 2 min video summary by Jason Silva). This hypothesis speculates, and offers preliminary evidence and argument, that black holes may be developmental attractors for the future of intelligent life throughout the universe.

I wish you the best in your own foresight journey, and that your thoughts and actions help you, your families, and your organizations to evolve and develop as well, every day, as this amazing universe will allow.

The Moral Landscape – A Four Part Review (Part 4)

More thoughts on Sam Harris’s insightful new book, The Moral Landscape: How Science Can Determine Human Values, 2011. I read it with two friends, and interpreted it through an evo devo universe lens. I originally planned to critique the entire book but I’ve since moved on to other readings, so this will be it for now.

Chapter 3 follows:

The Moral Landscape, Chapter 3 – Belief

Agreements (and my rewording/additions in italics):

Harris uses the OED definition of belief, particularly “mental acceptance of a proposition, statement, or fact as true.”

This is helpful, but we can get more specific. I prefer the way the great 20th century philosopher, historian and science writer Jacob Bronowski approaches belief, in Science and Human Values, 1965 and The Origins of Knowledge and Imagination, 1979. As I recall him, Bronowski talks of 1. “intuition/faith”, 2. “philosophy/experience” and 3. “science/experiment” as three fundamental types of thinking. We accept propositions based on our intuition or faith, based on our philosophy or experience, or based on our science or experiment. Bronowski concludes the first book above with a Platonic dialog between an intuitive artist, a practical public servant, and an experimentally-driven scientist, and uses them to represent three potentially fundamental and complementary thinking styles: 

1. Experimental, creative, intuitive, and faith-based (evolutionary*) thinking
2. Adaptive, practical, logical/philosophical, experience-based (evo devo*) thinking
3. Scientific, factual, replicable experiment-based (developmental*) thinking 

*The labels in parentheses are my additions to Bronowski’s model. I’m not sure, but I believe 🙂 he would have approved. As Harris reminds us, all of these are technically beliefs, but as Bronowski reminds us, the first category of thinking styles is the most common connotation for belief, the second is rational argument or experience, the third is science. This is a very practical categorization system for our thinking.

In these books, and in his sublime BBC documentary series and book, The Ascent of Man, 1976, Bronowski regularly visits these three categories of thought, and convinces us that we use and need all of these types of thinking to survive and thrive. In common parlance, beliefs are thoughtful intuitions and faiths that we have little justification for, beyond gut feeling or social custom. Thinking them to be true is an individually and socially creative act. We also have thoughts that have some practice, experience, logic, or philosophy to guide them. Finally, we have thoughts that have been to some degree validated via experiment, replication, scientific method. Bronowksi argues that we always need intuition, but as society matures, we increasingly gravitate away from pure faith-based thoughts to ones more informed by philosophy and experience, and in special cases, scientific knowledge, to the great benefit of civilization. But intuition, and a modicum of faith, must always remain, no matter how complex we become. Thus religion never goes away, nor should it, but it does get continually reformed.

“The less competent a person is in a given domain, the more he will tend to overestimate his abilities.”

This has been described as the Dunning-Kruger Effect, and is one very important source of cognitive bias. Ignorance and certainty often go hand in hand. One hallmark of complex thinking is when we qualify our statements, and are aware of places where we have a number of competing theories, all of which have some merit, and where we presently have insufficient data to form a judgment. We need to be tolerant of uncertainty and ambiguity, as it is a key component of nature itself, with its profusion of evolutionary experiments, many yet to be judged by the environment. In fact, we have to move beyond tolerance to actively championing diversity and experiment, especially in those controversial and uncertain areas where the right way or ways are not yet clear.

“The level of humility in scientific discourse is one of its most striking characteristics.”

Well said. The way that even a Nobel laureate usually speaks about subjects outside their expertise (there are of course exceptions) is something we should all strive for, in our discourse about the deepest and most important things, like our beliefs and values.

“Political conservatism… is a fairly well-defined perspective characterized by a general discomfort with societal change and a ready acceptance of social inequality… The psychologist John Jost and colleagues analyzed data from twelve countries, acquired from 23,000 subjects, and found this attitude [political conservatism] to [also] be correlated with dogmatism, inflexibility, death anxiety, need for closure, and anticorrelated with openness to experience, cognitive complexity, self-esteem, and social stability.”

Brilliant diagnosis! Yet we must recognize that liberals are equally “conservative” (parochial, protectionist, change-averse) on the economic dimensions of society. They gravitate to trade restriction, to onerous economic guarantees,  to high trade barriers, to change-averse unions, jobs for life, etc.

Liberals, in other words, are socially evolutionary (freedom oriented) and economically developmental (constraint oriented, tariffs, unions, guaranteed wages). Conservatives are socially developmental (constraint oriented) and economically evolutionary (freedom oriented).

Conservatives are the natural leaders in socially developmental aspects of our society (defense, security, intelligence, rulemaking, social norms and traditions) and in the economically evolutionary (market, innovation oriented) aspects as well. Liberals are natural leaders and key players in all the social innovations of modern societies, and in all positions of power involving constraint and regulation of economic activities. Both play critical evo and devo roles. Demonize either and you miss seeing why the system works as it does.

“If a person’s primary motivation in holding a belief is to hew to a positive state of mind—to mitigate feelings of anxiety, embarrassment, or guilt, for instance—this is precisely what we mean by phrases like “wishful thinking” and “self-deception.” Such a person will, of necessity, be less responsive to valid chains of evidence and argument that run counter to the beliefs he is seeking to maintain.”

Well said. We must be willing to undergo mental disruption and discomfort, to unlearn bad beliefs, if we seek to live an evidence-based life. Ideally, we will allow such disruption to become increasingly frequent the older we get, as there is more known, and more we have to unlearn, at least in particulars. If we can live with this disruption, we can be the kind of elderly that grow in wisdom and stay relevant, even as our knowledge must become both increasingly general and conditional, and our ability to change the world gets increasingly narrowly defined. Fortunately, our electronic extensions are continually rejuvenating themselves, and the more we embrace them, the more resilient we become.

The neurologist Robert Berton, On Being Certain, 2008, says schizophrenia is a disorder of pathological certainty, and obsessive compulsiveness is a disorder of pathological uncertainty. Certainty is primarily an emotional process, and is connected to but different from the chains of evidence and argument that determine the correctness of any belief.

Lovely insights.

There are genetic differences in the types and quality of human reasoning. “People who have inherited the most active form of the D4 [dopamine] receptor are more likely to believe in miracles and to be skeptical of science; the least active forms correlate with rational materialism.” There are also genetic differences in our innate risk tolerance, which in turn greatly influence our reasoning and conclusions. Does this variation mean that we cannot identify unproductive extremes? No.

Enlightening! Nurture’s contribution to human mental life gets steadily clearer.

I expect that in the future, we will come to understand two fundamental things about the genetic differences in human reasoning and belief systems: 1. There is a developmentally healthy envelope of variations in risk tolerance, willingness to believe strange things, and other thinking parameters. The vast majority (usually 99%?) of humans are almost always functioning within this envelope, and those times when they aren’t we can define as deprivation or disease. 2. Within this envelope, there is no developmental “optimum” that we can usefully define. Having a healthy evolutionary variety and distribution within the envelope of normal function will turn out to be as important as having developmental bounds on the size of the envelope.

This is all that will be left of the “eugenics” visions of the 20th century reductionists: just a better definition of the exceptional cases of disease, not discovery of an optimal configuration among a great variety of healthy norms. As healthy thinking is an evolutionary process, adaptation will always remain contingent and dependent on local context, and impossible to globally predict or define.

“Skeptics given the drug L-dopa, which increases dopamine levels, show an increased propensity to accept mystical explanations for novel phenomena. The fact that religious belief is both a cultural universal and appears to be tethered to the genome [and dopamine levels in the brain] has led scientists like [Robert] Burton to conclude that there is simply no getting rid of faith-based thinking.”

Absolutely! I doubt Harris would agree with this, but I see these dopamine experiments as beautiful evidence that our very brain machinery is biased to make us do: 1. Intuition/faith-based thinking, 2. Argument/experience-based thinking, and 3. Scientific/experimental-based thinking. All three are fundamentally necessary processes for thinking creatures in our universe, in my evo devo view. 

“Reason can bridge the gap between believers and nonbelievers.”

Harris explores how we purged such harmful beliefs as the belief in Witchcraft, and the cruel punishments that purported witches received in the West a few hundred years ago, and which they still receive in some African nations today. Reason can help us sort out harmful and regressive from progressive beliefs. But while I agree strongly with him here, I also think our human need for a rather large set of faith based-beliefs remains fundamental, in a world where complexity, for now, remains far greater than our minds.


“There does not seem to be a process in nature that allows for the creation of new structures dedicated to entirely novel modes of behavior and cognition.”

Disagree. We can’t yet say this definitively, but I’d bet universal evolutionary development guarantees regular emergence of new behavioral and cognitive novelty. I’d bet the consciousness and behavior modes of a human are qualitatively novel vs. that of an insect, and I’d predict the AI’s hyperconsciousness, given its new level of structural freedoms, will be qualitatively novel yet again.

“Much of our behavior and cognition… has not been selected for at all.”

Strongly disagree. All our behavior and thought undergo memetic selection. You just choose not to see or discuss it. You seem to be in the Denial phase of the death of an ultra-Darwinian world view (Denial, Anger, Bargaining, Death, and Acceptance being the full progression). You don’t even confront or critique the 35 years of literature on memes, in your entire book. I recommend Bob Aunger’s Darwinizing Culture: The Status of Memetics as a Science, 2001 as a start into that literature.

“I have argued there is no gulf between facts and values, because values reduce to a certain type of fact.” [Harris found both constructs used the medial prefrontal cortex (MPFC) and emotional areas in his research].

There is no such “reduction” occurring. It’s interesting that both scientific and ethical constructs use the MPFC and emotion, but that doesn’t make them the same. Ethical judgments are a subset of scientific judgments. Some ethical judgements are factual-scientific (developmental) others are creative (experimental) and they may or may not be or turn out to be factual. 

On Lie Detection science: “Whether or not we ever crack the neural code, enabling us to download a person’s private thoughts, memories, and perceptions without distortion, we will almost surely be able to determine, to a moral certainty, whether a person is representing his thoughts, memories, and perceptions honestly in conversation.”

I don’t share Harris’s faith in the perfectability of this science, by imperfect humans at least. Better lie detection will surely weed out the amateurs, but it will also breed better liars. The best liars, the ones that beat polygraphs today, are capable of amazing feats of self-deception, and belief in their own lies. Those that dissociate (create multiple personalities) may be detectable by neuroimaging, but what of those that learn to believe their own lies with their “whole mind”?

“Choosing beliefs freely is not what rational minds do.” [On his debate with Philip Ball].

Strongly disagree. In the realm of our intuition and faith-based thoughts, quite a number of these beliefs are freely and consciously or unconsciously chosen, based on how they make us feel, as Philip Ball apparently argues, and it is rational to do this. When we get argument or experience, or even science to constrain these beliefs, it is also rational to revise our beliefs. But we often don’t have even argument or experience to guide our first beliefs in an abstract or new area of thought. The act of intuitive or faith-based belief, the search for propositions that we think might be true, is a creative action, a necessary evolutionary step toward greater adaptive complexity and development.

“Believe a proposition because it is well supported by theory and evidence; believe it because it has been experimentally verified; believe it because a generation of smart people have tried their best to falsify it and failed; believe it because it is true (or seems so). This is a norm of cognition as well as the core of any scientific mission statement.”

Yes, but this is only a subset of the beliefs we use and need! Many of our beliefs are intuitive, or faith-based, and may not yet even be conscious, much less supported by argument or evidence. Consider our faith that the universe is comprehensible, or amenable to life, or people mostly moral. Most of our thinking may be based on such bottom-up, neural-net constructed beliefs. They are the foundation on which the tip of our conscious beliefs, argument, evidence, and science has emerged. We shouldn’t ignore them. At the same time, we can marvel that even with this sea of intuitive thinking as our inheritance, so much rationality emerges so predictably in all of us. Developmental psychology is yet another amazing example of the power of universal development.

Thoughts? Comments? Let me know, thanks. [tweetmeme source=”johnmsmart” only_single=false]

%d bloggers like this: